
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2024

Assignment 1, Lexical Analyzer

Deadline: Sunday January 28th, 2024
Evaluation: 8% of final grade
Late submission: penalty of 50% for each late working day

This assignment is about the design and implementation of a scanner for a programming language whose
lexical specifications are given below. The scanner identifies and outputs tokens (valid words and
punctuation) in the source program. Its output is a token that can thereafter be used by the syntactic
analyzer to verify that the program is syntactically valid. When called, the lexical analyzer should extract
the next token from the source program. The syntax of the language will be specified later in assignment
#2. The assignment includes two grading source files used by the marker. These files should be used as-
is and not be altered in any way. Completeness of testing is a major grading topic. You are responsible for
providing appropriate test cases that test for a wide variety of valid and invalid cases in addition to what is
in the grading source files provided.

Atomic lexical elements of the language

id ::= letter alphanum*
alphanum ::= letter | digit | _
integer ::= nonzero digit* | 0

float ::= integer fraction [e[+|−] integer]
fraction ::= .digit* nonzero | .0

letter ::= a..z |A..Z
digit ::= 0..9

nonzero ::= 1..9

Operators, punctuation and reserved words

== + | (; if public read
<> - &) , then private write
< * ! { . else func return
> / } : integer var self
<= = [-> float struct inherits
>=] void while let
 impl

Comments

• Block comments start with /* and end with */ and may span over multiple lines.
• Inline comments start with // and end with the end of the line they appear in.

Work to submit

Document
You must provide a short document that includes the following sections:

Section 1. Lexical specifications: Identify the lexical specification, expressed as regular expressions, that

you used in the design of the lexical analyzer. Highlight any changes that you may have applied
to the original lexical specifications and justify your changes.

Section 2. Finite state automaton: Finite state machine diagram describing the operation of your lexical
analyzer.

Section 3. Design: Give a brief overview of the overall structure of your solution, as well as a brief
description of the role of each component of your implementation.

Section 4. Use of tools: Identify all the tools/libraries/techniques that you have used in your analysis or
implementation and justify why you have used these particular ones as opposed to others.

Implementation
• Lexical analyzer: Write a lexical analyzer that recognizes the above-mentioned tokens. It should be a

function that returns a token data structure containing the information about the next token identified in
the source program file. The token data structure should contain information such as (1) the token type
(2) the lexeme of the token and (3) the location of the token in the source code. When lexical errors
are found, an error token should be produced, whose type is the specific error type, its lexeme is the
erroneous character stream, and its location is where the error was found in the source code. When a
token is identified from a file named, for example, originalfilename, it should be printed out into a file
named originalfilename.outlextokens that lists the token stream that corresponds to the original
program. When lexical errors are found, error messages should be printed out in a file named
originalfilename.outlexerrors.

• Test cases: Include many test cases that test a wide variety of valid and invalid cases. Test cases are
included in files that are read by the implementation. Your test files must include the test files provided
with the assignment, which should not have been altered. Samples of expected output files are also given
with the assignment as guidance.

• Driver: Include a driver that extracts the tokens from all your test files. For each test file, the corresponding
outlexerrors and outlextokens files should be generated.

Selected examples

0123 [Invalid number:0123] OR [integer:0][integer:123]
01.23 [Invalid number:01.23] OR [integer:0][float:1.23]
12.340 [Invalid number:12.340] OR [float:12.34][integer:0]
012.340 [Invalid number:012.340] OR [integer:0][float:12.34][integer:0]
12.34e01 [Invalid number:12.34e01] OR [12.34e0][integer:1]
12345.6789e-123 [float:12345.6789e-123]
12345 [integer:12345]
abc [id:abc]
abc1 [id:abc1]
abc_1 [id:abc_1]
abc1_ [id:abc1_]
_abc1 [Invalid identifier:_abc1]
1abc [Invalid identifier:1abc] OR [integer:1][id:abc]
_1abc [Invalid identifier:_1abc] OR

[Invalid identifier:_][integer:1][id:abc]

Assignment submission requirements and procedure

• Each submitted assignment should contain four components: (1) the source code, (2) a group of test files,

(3) a brief report, and (4) an executable named lexdriver, that extracts the tokens from all your test
files. For each test file, the corresponding outlexerrors and outlextokens files should be generated.

• The assignment statement provides test files (.src) and their corresponding output files.
• The source code should be separated into modules using a comprehensible coding style.
• The assignment should be submitted through moodle in a file named: “A#_student-id” (e.g.
A1_1234567, for Assignment #1, student ID 1234567) and the report must in a PDF format.

• You may use any language you want in the project and assignments but the only fully supported language
during the lab is Java.

• You have to submit your assignment before midnight on the due date on moodle.
• The file submitted must be a .zip file

Evaluation criteria and grading scheme

Analysis:
Lexical specifications as regular expressions – document Section 1. ind 2.1 2 pts
Finite state automaton representing the implementation, and description of the
method used to generate the automaton from the regular expressions – document
Section 2.

ind 2.2 3 pts

Design/implementation:
Description/rationale of the overall structure of the solution and the roles of the
individual components used in the applied solution to the stated problem –
document Section 3.

ind 4.3 2 pts

Correct implementation according to the stated problem. ind 4.4 20 pts
Error reporting – Output of clear error messages (error description and location) in
the outlexerrors file.

ind 4.4 3 pts

Output of token stream in the outlextokens file. ind 4.4 3 pts
Error recovery – the lexical analyzer continues running after errors are found. ind 4.4 2 pts
Completeness of test cases (in addition to the grading files). ind 4.4 10 pts
Use of tools:
Description of tools/libraries/techniques used in the analysis/implementation.
Description of other tools that might have been used. Justification of why the
chosen tools were selected – document Section 4.

ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the
analysis/implementation.

ind 5.1 3 pts

Total 50 pts

	Department of Computer Science
	Assignment 1, Lexical Analyzer

