

Concordia University
Department of Computer Science

and Software Engineering

Advanced program design with C++
COMP 345 --- Fall 2020

Team project assignment #1

Deadline: October 9th, 2020
Evaluation: 10% of final mark
Late submission: not accepted
Teams: this is a team assignment

Problem statement

This is a team assignment. It is divided into distinct parts. Each part is about the development of a part of the topic
presented as the team project. Even though it is about the development of a part of your team project, each
assignment is to be developed/presented/tested separately. The description of each part describes what are the
features that the part should implement, and what you should demonstrate. Note that the following descriptions
describe the baseline of the assignment, and are related to the project description. See the course web page for a
full description of the team project, as well as links to the details of the game rules to be implemented.

Specific design requirements

1. All data members of user-defined class type must be of pointer type.
2. All file names and the content of the files must be according to what is given in the description below.
3. All different parts must be implemented in their own separate .cpp/.h file duo. All functions’ implementation

must be provided in the .cpp file (i.e. no inline functions are allowed).
4. All classes must implement a correct copy constructor, assignment operator, and stream insertion operator.
5. Memory leaks must be avoided.
6. Code must be documented using comments (user-defined classes, methods, free functions, operators).
7. If you use third-party libraries that are not available in the labs and require setup/installation, you may not

assume to have help using them and you are entirely responsible for their proper installation for grading
purposes.

Parts to be implemented

Part 1: Map

Implement a group of C++ classes that implement the structure and operation of a map for the game Warzone
(https://www.warzone.com/). The map must be implemented as a connected graph, where each node represents
a territory. Edges between nodes represent adjacency between territories. Each territory can have any number of
adjacent territories. Continents must also be connected subgraphs, where each territory belongs to one and only
one continent. Each territory is owned by a player and contain a number of armies. The Map class can be used to
represent any map configuration. All the classes/functions that you implement for this component must all reside
in a single .cpp/.h file duo named Map.cpp/Map.h. You must deliver a file named MapDriver.cpp file that
contains a main function that creates a map and demonstrates that the map class implements the following
verifications: 1) the map is a connected graph, 2) continents are connected subgraphs and 3) each country
belongs to one and only one continent. The driver must provide test cases for various valid/invalid maps.

https://www.warzone.com/

The Map class is implemented as a connected graph. The graph’s nodes represents a
territory (implemented as a Territory class). Edges between nodes represent adjacency
between territories.
Continents are connected subgraphs. Each territory belongs to one and only one continent.
A territory is owned by a player and contain a number of armies.
The Map class can be used to represent any map graph configuration.
The Map class includes a validate() method that makes the following checks: 1) the map
is a connected graph, 2) continents are connected subgraphs and 3) each country belongs to
one and only one continent.
Driver that creates different Map objects and checks whether they are valid or not.

Part 2: Map loader

Implement a group of C++ classes that reads and loads a map file in the .map text file format as found in the
“Domination” game source files, available at: http://domination.sourceforge.net/getmaps.shtml, The map loader
must be able to read any map file available on the above web page. The map loader should store the map as a
graph data structure (see Part 1). The map loader should be able to read any text file (even ones that do not
constitute a valid map). All the classes/functions that you implement for this component must all reside in a single
.cpp/.h file duo named MapLoader.cpp/MapLoader.h. You must deliver a file named MapLoaderDriver.cpp
file that contains a main function that reads various files and successfully creates a map object for valid map files,
and rejects invalid map files of different kinds.

Map loader can read any Domination map file.
Map loader creates a map object as a graph data structure (see Part 1).
Map loader should be able to read any text file (even invalid ones).
Driver reads many different map files, creates a graph object for the valid ones and rejects
the invalid ones.

Part 3: Player

Implement a group of C++ classes that implement a Warzone player using the following design: A player owns a
collection of territories (see Part 1). A player owns a hand of Cards (see Part 5). A player has their own list of
orders to be created and executed in the current turn (see Part 3). A player must implement the following
methods, which are eventually going to get called when decisions have to be made: The player should contain a
method named toDefend() that return a list of territories that are to be defended, as well as a method named
toAttack() that returns a list of territories that are to be attacked. For now, all that these methods should do is to
establish an arbitrary list of territories to be defended, and an arbitrary list of territories that are to be attacked.
The class must also have a issueOrder() method that creates an Order object and puts it in the player’s list of
orders. The classes/functions that you implement for this component must all reside in a single .cpp/.h file duo
named Player.cpp/Player.h. You must deliver a file named PlayerDriver.cpp file that creates player objects
and demonstrates that the player objects indeed have the above-mentioned features.

Player owns a collection of territories (see Part 1)
Player owns a hand of Warzone cards (see Part 5)
Player contains methods toDefend() and toAttack() that return a list of territories that are
to be defended and to be attacked, respectively.
Player contains a issueOrder() method that creates an order object and adds it to the list of
orders.
Driver creates players and demonstrates that the above features are available.

http://domination.sourceforge.net/getmaps.shtml

Part 4: Orders list

Implement a group of C++ classes that implement a Warzone player orders using the following design: Orders are
created by the player during their turn and placed into the player’s list of orders. By default, each order is placed
in the list sequentially. After orders are put in the list, the player can move them around in the list (using the
move() method) or delete them (using the remove() method). The different kinds of orders are: deploy, advance,
bomb, blockade, airlift, and negotiate. All orders must have a validate() method that verifies if the order is valid.
All orders must have an execute() method that will result in some game action being implemented (see the
project description document. Note that the orders’ actions do not need to be implemented at this point). Invalid
orders can be created and put in the list, but their execution will not result in any action. All the classes/functions
that you implement for this component must all reside in a single .cpp/.h file duo named
Orders.cpp/Orders.h. You must deliver a file named OrdersDriver.cpp file that contains a main function that
creates a list of orders and demonstrates that the OrdersList implemented according to the following
specifications:

The OrdersList class contains a list of Order objects.
Each kind of order is implemented as a subclass of the Order class.
The Order class implements a stream insertion operator that outputs a string describing the
order. If the order has been executed, it should also output the effect of the order.
Every order subclass must implement the validate() method that is used to validate if the
order is valid.
Every order subclass must implement the execute() method that first validates the order,
and executes its action if it is valid, according to the order’s meaning and the player’s state.
The OrdersList class implements a remove() method that deletes an order from the list.
The OrdersList class implements a move() method to move an order in the list of orders.
Driver that creates orders of every kind, places them in an OrdersList object, and
demonstrates that the above features are available.

Part 5: Cards deck/hand

Implement a group of C++ classes that implements a deck and hand of Warzone cards. Each card has a type
from: bomb, reinforcement, blockade, airlift and diplomacy. The deck must have a draw() method that allows a
player to draw a card at random from the cards remaining in the deck and place it in their hand of cards. The
cards must have a play() method that is called to play the card, which creates an order and adds it to the
player’s list of orders and then returns the card to the deck. All the classes/functions that you implement for this
component must all reside in a single .cpp/.h file duo named Cards.cpp/Cards.h. You must deliver a file
named CardsDriver.cpp file that creates a deck of Warzone cards. The driver must also create a hand object
that is filled by drawing cards from the deck.

Deck is a finite collection of Warzone cards.
Hand is a finite collection of Warzone cards.
Each card has a type from: spy, bomb, reinforcement, blockade, airlift, and diplomacy.
Deck has a draw() method that allows a player to draw a card at random from the cards
remaining in the deck and place it in their hand.
Each card has a play() method that enables a player to use it during game play by creating
special orders. Once a card has been played, it is removed from the hand and put back into
the deck.
Driver that creates a deck of cards of all different kinds, then creates a hand object that is
filled by drawing cards from the deck, then calls the play method of all cards in the hand.

Assignment submission requirements and procedure

You are expected to submit a group of C++ files implementing a solution to all the problems stated above (Part 1,
2, 3, 4, 5). Your code must include a driver (i.e. a finle containing a main function) for each part that allows the
marker to observe the execution of each part during the lab demonstration. Each driver should simply create the
components described above and demonstrate that they behave as mentioned above.

You have to submit your assignment before midnight on the due date on the moodle page for the course Late
assignments are not accepted. The file submitted must be a .zip file containing all your C++ code. Do not submit
other files such as the project file from your IDE. You are allowed to use any C++ programming environment as
long as you can demonstrate your assignment on zoom during the demonstration time.

Evaluation Criteria

Knowledge/correctness of game rules:

Mark deductions: during the presentation or code review it is found that the
implementation does not follow the rules of the Warzone game.

2 pt (indicator 4.1)

Compliance of solution with stated problem (see description above):
Mark deductions: during the presentation or code review, it is found that the code
does not do some of which is asked in the above description.

12 pts (indicator 4.4)

Modularity of the solution:
Mark deductions: some of the data members of user-defined class type are not of
pointer type, or the above indications are not followed regarding the
files/classes/methods needed for each part.

2 pts (indicator 4.3)

Mastery of language/tools/libraries:
Mark deductions: the program crashes during the presentation. The presenter shows
lack of understanding or clarity in discussing the technical aspects of the
implementation.

2 pts (indicator 5.1)

Code readability: naming conventions, clarity of code, use of comments:
Mark deductions: some class/variable/function names are meaningless, code is hard
to understand, comments are missing, presence of commented-out code.

2 pt (indicator 7.3)

Total 20 pts (indicator 6.4)

	COMP 345 --- Fall 2020

