
 1

Concordia University
Department of Computer Science

and Software Engineering

Advanced program design with C++
COMP 345 --- Fall 2015

Individual assignment #1

Deadline: Friday, October 23, 2015
Evaluation: 5% of final mark
Late submission: not accepted
Teams: this is an individual assignment

Problem statement

This is an individual assignment. It is divided into three distinct parts. Each individual student is expected to select
one of these parts as his/her assignment. Each part is about the development of a part of the topic presented as
the team project. Even though it is about the development of a part of your team project, each assignment has to
be developed independently of the others and is not to be presented as an integrated part of the team project, or
include the implementation of one another's aspects. Each member of your team is free to choose to do any part,
and is expected to follow a different design approach than the other team members that have selected the same
assignment topic. Note that the following descriptions describe the baseline of the assignment, and are related to
the project description (see the course web page for a full description of the team project).

Part 1: Map

Implement a group of C++ classes that implement a map for the game of Risk. The map must be implemented as
a connected graph, where each node represents a country. Edges between nodes represent adjacency between
countries. Continents must be implemented as connected subgraphs, where each country belongs to one and
only one continent. Each country is owned by a player and contain armies.

Part 2: Game driver

Implement a group of C++ classes for the game driver, i.e. a component that controls each of the phases of the
game and gives control to each of the players in turn during game play. The phases of play are: 1) startup phase
(where the number of players and map are chosen, and the countries are randomly assigned to the players); 2)
the main play phase (a round-robin turn-based phase where the players are allowed to reinforce, attack and
move). The sub-phases of the main phase are: a) reinforcement phase (where a player is given some armies and
places them on some if the countries he owns) b) attack phase (where a player may declare a series of attacks
from one of his countries to one of its adjacent countries owned by another player) c) fortification phase (where a
player may move some armies from one of his countries to another of his countries). Note that this game driver
should only the "empty shell" of the eventual driver used in the project, i.e. it only implements the ordering of the
phases and leaves the implementation details of each phase as stubs. The resulting implementation should
implement a round-robin loop over the players and allow the players to play each of their phase in their own turn.

Part 3: Battle

Implement a group of C++ classes that implement the mechanics of a country attacking another using dice as
described in the project description. The player chooses one of the countries he owns that contains two or more
armies, and declares an attack on an adjacent country that is owned by another player. A battle is then simulated
by the attacker rolling at most 3 dice (which should not be more than the number of armies contained in the
attacking country) and the defender rolling at most 2 dice (which should not be more than the number of armies
contained in the defending country). The outcome of the attack is determined by comparing the defender’s best

 2

dice roll with the attacker’s best dice roll. If the defender rolls greater or equal to the attacker then the attacker
loses an army, otherwise the defender loses an army. If the defender rolled two dice then his other dice roll is
compared to the attacker's second best dice roll and a second army is lost by the attacker or defender in the
same way. The attacker can choose to continue attacking until either all his armies or all the defending armies
have been eliminated. If all the defender's armies are eliminated the attacker captures the territory. The attacking
player must then place a number of armies in the conquered country which is greater or equal than the number of
dice that was used in the attack that resulted in conquering the country. There must be an “all-in” attack mode that
uses the maximum number of dice on both sides and runs automatically until the attack results in either a) the
defending country to be conquered and all armies of the conquering country are moved to the conquered country
or b) the attacking country runs out of armies and cannot attack anymore.

Part 4: Save/load

Implement a group of C++ classes that reads and loads a map file in the .map text file format as found in the

“Conquest Maps” resource, available at: http://www.windowsgames.co.uk/conquest_maps.html, for example the
classic Risk map can be downloaded at http://www.windowsgames.co.uk/ConquestMaps/World.zip. The map
saver/loader must be able to read any such map, and do the reverse operation and save a game map in the .map

text file format. Note that this assignment does not require that the map be created as a connected graph (even
though the project will eventually have that requirement). The saver/loader should store the map into some kind of
data structure that enables the following verifications that should be applied as a map is being saved/loaded: 1)
the map represents a connected graph, 2) continents are connected subgraphs and 3) each country belongs to
one and only one continent.

Assignment submission requirements and procedure

You are expected to submit a group of C++ files implementing a solution to one of the problems stated above
(Part 1, 2, 3 or 4). Your code must include a driver that allows the marker to observe the execution of your code
on a standard lab computer. The driver should simply create one of the components described above and
demonstrate that it behaves as mentioned above. The use of unit testing such as cppUnit is not mandatory but

encouraged. Along with your submitted code, you have to explain your analysis and design. Briefly explain the
game rules involved in the creation of your assignment, citing external sources for specific game rules. Briefly
describe the design you adopted as a solution. The design description can be backed-up, for example, by
doxygen-generated documentation, regular code comments, or a simple diagram. The focus of this course being

the coding aspect of software development, you are discouraged to submit extensive documentation, and if you
do, you will not receive additional marks for doing so.

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 1”. Late assignments are not accepted. The file
submitted must be a .zip file containing all your code. You are allowed to use any C++ programming environment
as long as it is usable in the labs. No matter what programming environment you are using, you are responsible to
give proper compilation and usage instructions to the marker in a README file to be included in the zip file.

http://www.windowsgames.co.uk/conquest_maps.html
http://www.windowsgames.co.uk/ConquestMaps/World.zip

 3

Evaluation Criteria

Analysis:
 Clarity and correctness of statement of game rules involved: 5 pts (indicator 4.1)
Design:
 Compliance of solution with stated problem: 20 pts (indicator 4.4)

Simplicity and appropriateness of the solution: 3 pts (indicator 4.3)
Clarity of design description: 3 pts (indicator 7.3)

Use of tools:
 Rationale for selection of tools/libraries used: 2 pts (indicator 5.2)

Proper use of language/tools/libraries: 4 pts (indicator 5.1)
Implementation:

Code readability: naming conventions, clarity, use of comments: 3 pts (indicator 7.3)

Coding style: .h and .cpp files: 3 pts (indicator 5.1)

Relevance of driver and completeness of presented results: 7 pts (indicator 4.4)
Total 50 pts (indicator 6.4)

