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COMPILER DESIGN
Syntactic analysis: Part I

Parsing, derivations, grammar transformation, predictive 
parsing, introduction to first and follow sets
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• Syntax analysis involves parsing the token sequence to identify the syntactic 
structure of the program. 

• The parser's output is some form of intermediate representation of the program's 
structure, typically a parse tree, which replaces the linear sequence of tokens 
with a tree structure built according to the rules of a formal grammar which is 
used to define the language's syntax. 

• This is usually done using a context-free grammar which recursively defines 
components that can make up an valid program and the order in which they 
must appear. 

• The resulting parse tree is then analyzed, augmented, and transformed by later 
phases in the compiler. 

• Parsers are written by hand or generated by parser generators, such as Yacc, 
Bison, ANTLR or JavaCC, among other tools.

Syntactical analysis
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• Roles

• Analyze the structure of the program and its component declarations, definitions,  
statements and expressions

• Check for (and recover from) syntax errors

• Drive the front-end’s execution

Syntactic analyzer
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• Historically based on formal natural language 
grammatical analysis (Chomsky, 1950s).

• Use of a generative grammar:

• builds sentences in a series of steps;

• starts from abstract concepts defined by a set of 
grammatical rules (often called productions);

• refines the analysis down to lexical elements.

• Analyzing (parsing) consists in constructing the 
way in which the sentences can be constructed by 
the productions.

• Valid sentences can be represented as a parse tree.

• Constructs a proof, called a derivation, that the 
grammatical rules of the language can generate 
the sequence of tokens given in input.

• Most of the standard parsing algorithms were 
invented in the 1960s. 

• Donald Knuth is often credited for clearly 
expressing and popularizing them.  

Syntax analysis: history
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Donald Knuth

Noam Chomsky
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Example
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<sentence>

<noun phrase>

<article> <noun>

the dog

<verb phrase>

<verb> <noun phrase>

<article> <noun>

gnawed the bone

<sentence>    ::= <noun phrase><verb phrase>
<noun phrase> ::= article noun
<verb phrase> ::= verb <noun phrase>
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• Syntax: defines how valid sentences are formed

• Semantics: defines the meaning of valid sentences

• Some grammatically correct sentences can have no meaning
• “The bone walked the dog”

• It is impossible to automatically validate the full meaning of all syntactically valid 
English sentences
• Spoken languages may have ambiguous meaning

• Programming languages must be non-ambiguous 

• In programming languages, semantics is about giving a meaning by translating 
programs into executables 

Syntax and semantics

Joey Paquet, 2000-2018
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• A grammar is a quadruple (T,N,S,R)

• T: a finite set of terminal symbols

• N: a finite set of non-terminal symbols

• S: a unique starting symbol (SN)

• R: a finite set of productions 

•  | (,(TN)) 

• Context free grammars have productions of the form:

• A | (AN)((TN))

•  | (TN) is called a sentential form: 
• the dog <verb> the bone

• gnawed bone <noun> the 

•  | (T) is called a sentence: 
• the dog gnawed the bone

• gnawed bone the the

Grammars

Joey Paquet, 2000-2018
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• J.W. Backus: main designer of the first FORTRAN compiler

• P. Naur: main designer of the Algol-60 programming language

• non-terminals are placed in angle brackets

• the symbol ::= is used instead of an arrow

• a vertical bar can be used to signify alternatives

• curly braces are used to signify an indefinite number of repetitions

• square brackets are used to signify optionality

• Widely used to represent programming languages’ syntax

• Meta-language

Backus-Naur Form

Joey Paquet, 2000-2018
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Peter Naur

John Backus
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• Pascal type declarations

• Grammar in BNF:

• Example:

BNF: Example

Joey Paquet, 2000-2018
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<typedecl> ::= type <typedeflist>
<typedeflist> ::= <typedef> [ <typedeflist> ]
<typedef> ::= <typeid> = <typespec> ;
<typespec> ::= <typeid>

| <arraydef>
| <ptrdef>
| <rangedef>
| <enumdef>
| <recdef>

<typeid> ::= id
<arraydef> ::= [ packed ] array <lbrack> <rangedef> <rbrack> of <typeid>
<lbrack> ::= [
<rbrack> ::= ]
<ptrdef> ::= ^<typeid>
<rangedef> ::= <number> .. <number>
<number> ::= <digit> [ <number> ]
<enumdef> ::= <lparen> <idlist> <rparen>
<lparen> ::= (
<rparen> ::= )
<idlist> ::= <ident> { , <ident> }
<recdef> ::= record <vardecllist> end ;
<vardecllist>  ::= <vardecl> [ <vardecllist> ]
<vardecl>      ::= <idlist> : <typespec> ;

type string20 = packed array[1..20] of char;
type intptr   = ^integer;

floatptr = ^real;
type herb     = (tarragon, rosemary, thyme, alpert);

tinyint  = 1..7;
student  = record

name, address : string20;
studentid     : array[1..20] of integer;
grade         : char;

end;;
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• Grammar for simple arithmetic expressions:

Example

Joey Paquet, 2000-2018
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G = (T,N,S,R),
T = {id,+,,,/,(,)},
N = {E},
S = E, 
R = {E  E + E,

E  E  E,
E  E  E,
E  E / E,
E  ( E ),
E  id}
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• Parse the sequence: (a+b)/(ab)

• The lexical analyzer tokenizes the sequence as: (id+id)/(idid)

• Construct a parse tree for the expression:

• start symbol = root node

• non-terminal = internal node

• terminal = leaf

• production, sentential form = subtree

• sentence =              tree

Example

Joey Paquet, 2000-2018
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• Starts at the root (starting symbol)

• Builds the tree downwards from: 

• the sequence of tokens in input (from left to right)

• the rules in the grammar

Top-down parsing

Joey Paquet, 2000-2018
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E

/E E

1- Using: E  E / E

Example

Joey Paquet, 2000-2018
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E

/E E

( )E ( )E

2- Using: E  ( E )

 EE+ EE

E

/E E

( )E ( )E

id id id id

3- Using: E  E + E
E  E  E
E  idE  E + E

E  E  E
E  E  E
E  E / E
E  ( E )
E  id

(id+id)/(idid)
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• The application of grammar rules towards the recognition of a grammatically 
valid sequence of terminals can be represented with a derivation

• Noted as a series of transformations:

• {  [] | (,(TN))  (R)} 

• where production  is used to transform  into . 

Derivations

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design



Concordia University Department of Computer Science and Software Engineering

• In this case, we say that E  (id+id)/(idid)

• The language generated by the grammar can be defined as: 

• L(G) = { | S    (T)} *
G

Derivation example

Joey Paquet, 2000-2018
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*
G

E  E / E [E  E / E]
 E / ( E ) [E  ( E )]
 E / ( E  E ) [E  E  E]
 E / (E  id ) [E  id]
 E / ( id  id ) [E  id]
 ( E ) / ( id  id ) [E  ( E )]
 ( E + E ) / ( id  id ) [E  E + E]
 ( E + id ) / ( id  id ) [E  id]
 ( id + id ) / ( id  id ) [E  id]

 EE+ EE

E

/E E

( )E ( )E

id id id id
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Leftmost and rightmost derivation

Joey Paquet, 2000-2018
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E  E / E [E  E / E]
 E / ( E ) [E  ( E )]
 E / ( E  E ) [E  E  E]
 E / (E  id ) [E  id]
 E / ( id  id ) [E  id]
 ( E ) / ( id  id ) [E  ( E )]
 ( E + E ) / ( id  id ) [E  E + E]
 ( E + id ) / ( id  id ) [E  id]
 ( id + id ) / ( id  id ) [E  id]

E  E / E [E  E / E]
 ( E ) / E [E  ( E )]
 ( E + E ) / E [E  E + E]
 ( id + E ) / E [E  id]
 ( id + id ) / E  [E  id]
 ( id + id ) / ( E ) [E  ( E )]
 ( id + id ) / ( E  E ) [E  E  E]
 ( id + id ) / ( id  E ) [E  id]
 ( id + id ) / ( id  id ) [E  id]

Rightmost
Derivation

Leftmost
Derivation
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• A top-down parser builds a parse tree starting at the root down to the leafs

• It builds leftmost derivations, i.e. a forward derivation proving that a sentence can be 
generated from the starting symbol by using a sequence of forward applications of 
productions:

• A bottom-up parser builds a parse tree starting from the leafs up to the root

• It builds rightmost derivations, i.e. a reverse derivation proving that one can come to 
the starting symbol from a sentence by applying a sequence of reverse applications of 
productions:

Top-down and bottom-up parsing

Joey Paquet, 2000-2018
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 ( id + id ) / ( id  id ) [E  id]
 ( E + id ) / ( id  id ) [E  id]
 ( E + E ) / ( id  id ) [E  ( E + E )]
 ( E ) / ( id  id ) [E  ( E )]
 E / ( id  id ) [E  id]
 E / ( E  id ) [E  id]
 E / ( E  E ) [E  E - E]
 E / ( E ) [E  ( E )]

E  E / E [E  E / E]

E  E / E [E  E / E]
 ( E ) / E [E  ( E )]
 ( E + E ) / E [E  E + E]
 ( id + E ) / E [E  id]
 ( id + id ) / E  [E  id]
 ( id + id ) / ( E ) [E  ( E )]
 ( id + id ) / ( E  E ) [E  E  E]
 ( id + id ) / ( id  E ) [E  id]
 ( id + id ) / ( id  id ) [E  id]
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Grammar transformations

Joey Paquet, 2000-2018
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• Extended BNF includes constructs for optionality and repetition.

• They are very convenient for clarity/conciseness of presentation of the grammar.

• However, they have to be removed, as they are not compatible with standard 
generative parsing techniques.

Tranforming extended BNF grammar constructs

Joey Paquet, 2000-2018
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• For optionality BNF constructs:

• For repetition BNF constructs: 

Transforming optionality and repetition

Joey Paquet, 2000-2018
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1- Isolate productions of the form: 
A  [1…n] (optionality)

2- Introduce a new non-terminal N
3- Introduce a new rule

A   N 
4- Introduce two rules to generate the optionality of N

N  1…n

N  

1- Isolate productions of the form: 
A  {1…n} (repetition)

2- Introduce a new non-terminal N
3- Introduce a new rule

A   N 
4- Introduce two rules to generate the repetition of N

N  1…n N (right recursion)
N  
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• Which of these trees is the right one for the expression “id + id * id” ?

• According to the grammar, both are right.

• The language defined by this grammar is ambiguous. 

• That is not acceptable in a compiler.

• Non-determinism needs to be avoided.

Ambiguous grammars

Joey Paquet, 2000-2018
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id id

id+ EE

E * E

E

id

id id

* EE

E + E

E
E  E + E
E  E  E
E  E  E
E  E / E
E  ( E )
E  id
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• Solutions: 

• Incorporate operation precedence in the parser (complicates the compiler, rarely done)

• Implement backtracking (complicates the compiler, inefficient) 

• Transform the grammar to remove ambiguities

• Example: introduce operator precedence in the grammar

• Example: factorization

Removing ambiguities

Joey Paquet, 2000-2018
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E  E + E
E  E  E
E  E  E
E  E / E
E  ( E )
E  id

E  E + T 
E  E  T 
E  T
T  T  F 
T  T / F 
T  F
F  ( E ) 
F  id

A  aB
A  aC
A  b

A  aD
A  b
D  B
D  C

id

* FT

E + T

E

T

id

F

id

F
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• The aim is to design a parser that has no arbitrary choices to make between rules 
(predictive parsing)

• In predictive parsing, the assumption is that the first rule that can apply is 
applied, as there are never two different applicable rules. 

• In this case, productions of the form AA will be applied forever

Left recursion

Joey Paquet, 2000-2018
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E

E + E

E + E

E + E

E + E

...

E  E + E
E  E  E
E  E  E
E  E / E
E  ( E )
E  id

id + id + id
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• Left recursions may seem to be easy to locate.

• However, they may be transitive, or non-immediate.

• Non-immediate left recursions are sets of productions of the form: 

Non-immediate left recursion

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

A  B | …
B  A | …

A

B 

A 

B 

A 

...
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• This problem afflicts all top-down parsers

• Solution: apply a transformation to the grammar to remove the left recursions

Transforming left recursion

Joey Paquet, 2000-2018
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1- Isolate each set of productions of the form: 
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to: 

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute: 

A   | 1A | 2A | 3A | ... (right-recursive)
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Example

Joey Paquet, 2000-2018
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E  E + T | E  T | T
T  T  F | T / F | F
F  ( E ) | id

(i) E  E + T | E  T | T

1- E  E + T | E  T (A  A1 | A2) 
E  T (A  1)

2- E (A)
3- E  TE (A  1A)
4- E   | +TE | TE (A   | 1A | 2A)

E  TE
E   | +TE | TE
T  T  F | T / F | F
F  ( E ) | id

1- Isolate each set of productions of the form: 
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to: 

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute: 

A   | 1A | 2A | 3A | ... (right-recursive)
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Example

Joey Paquet, 2000-2018
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E  TE
E   | +TE | TE
T  T  F | T / F | F
F  ( E ) | id

(ii) T  T  F | T / F | F

1- T  T  F | T / F (A  A1 | A2) 
T  F (A  1)

2- T (A)
3- T  FT (A  1A)
4- T   | FT | /FT (A   | 1A | 2A)

E  TE
E   | +TE | TE
T  FT
T   | FT | /FT
F  ( E ) | id

1- Isolate each set of productions of the form: 
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to: 

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute: 

A   | 1A | 2A | 3A | ... (right-recursive)
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• As the parse is essentially predictive, it cannot be faced with non-deterministic 
choice as to what rule to apply

• There might be sets of rules of the form: A  1 | 2 | 3 | … 

• This would imply that the parser needs to make a choice between different right 
hand sides that begin with the same symbol, which is not acceptable 

• They can be eliminated using a factorization technique

Non-recursive ambiguity

Joey Paquet, 2000-2018
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1- Isolate a set of productions of the form: 
A  1 | 2 | 3 | …        (ambiguity)

2- Introduce a new non-terminal A
3- Replace all the ambiguous set of productions on A by: 

A  A (factorization)
4- Add a set of factorized productions on A : 

A  1 | 2 | 3 | … 
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Predictive parsing

Joey Paquet, 2000-2018
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• It is possible to write a parser that implements an ambiguous grammar.

• In this case, when there is an arbitrary alternative, the parser explores the 
alternatives one after the other.

• If an alternative does not result in a valid parse tree, the parser backtracks to the 
last arbitrary alternative and selects another right-hand-side.

• The parse fails only when there are no more alternatives left .

• This is often called a brute-force method.

Backtracking

Joey Paquet, 2000-2018
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Example
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S  ee | bAc | bAe
A  d  | cA

Seeking for : bcde

S

b cA

d

c A

S

b eA

d

c A

S  bAe [S  bAe]
 bcAe [A  cA]
 bcde [A  d]
 OK

S  bAc [S  bAc]•
 bcAc [A  cA]
 bcdc [A  d]
 error
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• Backtracking is tricky and inefficient to implement.

• Generally, code is generated as rules are applied; backtracking involves retraction 
of the generated code!

• Parsing with backtracking is seldom used.

• The most simple solution is to eliminate the ambiguities from the grammar.

• Some more elaborated solutions have been recently found that optimize 
backtracking that use a caching technique to reduce the number of generated 
sub-trees [2,3,4,5].

Backtracking

Joey Paquet, 2000-2018
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• Restriction: the parser must always be able to determine which of the right-hand 
sides to follow, only with its knowledge of the next token in input. 

• Top-down parsing without backtracking.

• Deterministic parsing.

• The assumption is that no backtracking is possible/necessary.

Predictive parsing

Joey Paquet, 2000-2018
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• Recursive descent predictive parser

• A function is defined for each non-terminal symbol.

• Its predictive nature allows it to choose the right right-hand-side.

• It recognizes terminal symbols and calls other functions to recognize non-terminal 
symbols in the chosen right hand side.

• The parse tree is actually constructed by the nesting of function calls.

• Very easy to implement.

• Hard-coded: allows to handle unusual situations. 

• Hard to maintain.

Predictive parsing

Joey Paquet, 2000-2018
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• Table-driven predictive parser

• A parsing table tells the parser which right-hand-side to choose.

• The driver algorithm is standard to all parsers.

• Only the table changes when the language changes, the algorithm is universal.

• Easy to maintain.

• The parsing table is hard and error-prone to build for most languages.

• Tools can be used to generate the parsing table. 

• Will be covered in next lecture.

Predictive parsing

Joey Paquet, 2000-2018
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First and Follow sets

Joey Paquet, 2000-2018
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• When parsing using a certain non-terminal symbol, predictive parsers need to 
know what right-hand-side to choose, knowing only what is the next token in 
input.

• If all the right hand sides begin with terminal symbols, the choice is 
straightforward.

• If some right hand sides begin with non-terminals, the parser must know what 
token can begin any sequence generated by this non-terminal (i.e. the FIRST set 
of these non-terminals).

• If a FIRST set contains , it must know what may follow this non-terminal (i.e. the 
FOLLOW set of this non-terminal) in order to chose an  production. 

First and Follow sets

Joey Paquet, 2000-2018
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Example
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FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E   TE’
E’  +TE’ | 
T   FT’
T’  *FT’ | 
F   0 | 1 | (E)
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Example: Recursive descent predictive parser
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error = false
Parse(){

lookahead = NextToken()
if (E();match('$')) return true
else return false}

E(){
if (lookahead is in [0,1,(])       //FIRST(TE')

if (T();E'();) 
write(E->TE')

else error = true
else error = true
return !error}

E'(){
if (lookahead is in [+])           //FIRST[+TE']

if (match('+');T();E'()) 
write(E'->TE')

else error = true
else if (lookahead is in [$,)]     //FOLLOW[E'] (epsilon)

write(E'->epsilon)
else error = true
return !error}

T(){
if (lookahead is in [0,1,(])       //FIRST[FT']

if (F();T'();) 
write(T->FT')

else error = true
else error = true
return !error}

FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E   TE’
E’  +TE’ | 
T   FT’
T’  *FT’ | 
F   0 | 1 | (E)
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Example: Recursive descent predictive parser
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T'(){
if (lookahead is in [*])           //FIRST[*FT']

if (match('*');F();T'()) 
write(T'->*FT')

else error = true
else if (lookahead is in [+,),$]   //FOLLOW[T'] (epsilon)

write(T'->epsilon)
else error = true
return !error}

F(){
if (lookahead is in [0])           //FIRST[0]

match('0');write(F->0)
else if (lookahead is in [1])      //FIRST[1]    

match('1');write(F->1)    
else if (lookahead is in [(])      //FIRST[(E)]

if (match('(');E();match(')')) 
write(F->(E));      

else error = true
else error = true
return !error}

}

FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E   TE’
E’  +TE’ | 
T   FT’
T’  *FT’ | 
F   0 | 1 | (E)
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