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COMPILER DESIGN

Syntactic analysis: Part |

Parsing, derivations, grammar transformation, predictive
parsing, introduction to first and follow sets
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Syntactical analysis

Syntax analysis involves parsing the token sequence to identify the syntactic
structure of the program.

The parser's output is some form of intermediate representation of the program's
structure, typically a parse tree, which replaces the linear sequence of tokens
with a tree structure built according to the rules of a formal grammar which is
used to define the language's syntax.

This is usually done using a context-free grammar which recursively defines
components that can make up an valid program and the order in which they
must appear.

The resulting parse tree is then analyzed, augmented, and transformed by later
phases in the compiler.

Parsers are written by hand or generated by parser generators, such as Yace,
Bison, ANTLR or JavaCC, among other tools.
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Syntactic analyzer

- Roles

« Analyze the structure of the program and its component declarations, definitions,
statements and expressions

- Check for (and recover from) syntax errors
- Drive the front-end’s execution
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Syntax analysis: history

Historically based on formal natural language
grammatical analysis (Chomsky, 1950s).

Use of a generative grammar:

- builds sentences in a series of steps;

- starts from abstract concepts defined by a set of
grammatical rules (often called productions);

- refines the analysis down to lexical elements.

Analyzing (parsing) consists in constructing the
way in which the sentences can be constructed by Noam Chomsky
the productions.

Valid sentences can be represented as a parse tree.

Constructs a proof, called a derivation, that the
grammatical rules of the language can generate
the sequence of tokens given in input.

Most of the standard parsing algorithms were
invented in the 1960s.

Donald Knuth is often credited for clearly
expressing and popularizing them.

Donald Knuth
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Example

<sentence> ::= <noun phrase><verb phrase>
<noun phrase> ::= article noun
<verb phrase> ::= verb <noun phrase>

<sentence>

///////////A\\\\\\\\\\

<noun phrase> <verb phrase>

N T

<article> <noun> <verb> <noun phrase>

N

<article> <noun>
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Syntax and semantics

- Syntax: defines how valid sentences are formed

- Semantics: defines the meaning of valid sentences

- Some grammatically correct sentences can have no meaning
« “The bone walked the dog”

- Itis impossible to automatically validate the full meaning of all syntactically valid
English sentences

- Spoken languages may have ambiguous meaning
« Programming languages must be non-ambiguous

- In programming languages, semantics is about giving a meaning by translating
programs into executables
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Grammars

< A grammar is a quadruple (T'N,S,R)
- T:afinite set of terminal symbols
« N: afinite set of non-terminal symbols
- S:a unique starting symbol (SeN)
- R: afinite set of productions
c a—f | (a,Pe(TUN)¥)

- Context free grammars have productions of the form:

« A>B | (AeN)A(Be(TUN))

- a | ae(TUN)*is called a sentential form:
- the dog <verb> the bone
- gnawed bone <noun> the

- o | ae(T)* is called a sentence:

- the dog gnawed the bone
- gnawed bone the the
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Backus-Naur Form

- JW. Backus: main designer of the first FORTRAN compiler
« P.Naur: main designer of the Algol-60 programming language

non-terminals are placed in angle brackets

the symbol : :=is used instead of an arrow

a vertical bar can be used to signify alternatives

curly braces are used to signify an indefinite number of repetitions
square brackets are used to signify optionality

- Widely used to represent programming languages’ syntax
- Meta-language

John Backus

Peter Naur
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BNF: Example

- Pascal type declarations

« Grammar in BNF:

Concordia University

<typedecl>
<typedeflist>
<typedef>
<typespec>

<typeid>
<arraydef>
<lbrack>
<rbrack>
<ptrdef>
<rangedef>
<number>
<enumdef>
<lparen>
<rparen>
<idlist>
<recdef>
<vardecllist>
<vardecl>

type <typedeflist>
<typedef> [ <typedeflist> ]
<typeid> = <typespec> ;
<typeid>

<arraydef>

<ptrdef>

<rangedef>

<enumdef>

<recdef>

id

[ packed ] array <lbrack> <rangedef> <rbrack> of <typeid>
[

1

~<typeid>

<number> .. <number>
<digit> [ <number> ]
<lparen> <idlist> <rparen>
(

)

<ident> { , <ident> }
record <vardecllist> end ;
<vardecl> [ <vardecllist> ]
<idlist> : <typespec> ;

type string2e

type intptr
floatptr

type herb
tinyint
student

packed array[1..20] of char;

~integer;

“real;

(tarragon, rosemary, thyme, alpert);

1..7;

record
name, address : string2e;
studentid ¢ array[1..20] of integer;
grade : char;

end;;
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Example

- Grammar for simple arithmetic expressions:

(T,N,S,R),
{id)+)_)*)/)())}J
1E},

E

J
{E
E

R NN
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Example

- Parse the sequence: (a+b)/(a-b)
- The lexical analyzer tokenizes the sequence as: (id+id)/(id—id)

 Construct a parse tree for the expression:

- start symbol root node
non-terminal internal node
terminal leaf
production, sentential form subtree

sentence tree

Concordia University Department of Computer Science and Software Engineering
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Top-down parsing

- Starts at the root (starting symbol)

« Builds the tree downwards from:
- the sequence of tokens in input (from left to right)
- the rules in the grammar

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design
Example

(id+id)/(id—id)

1- Using: E > E / E

3- Using: E > E + E
E—>E-E
E —> id

E

T~

2- Using: E > ( E ) E /
E
E

%
%
%
%
%
%

N

(

E +

4
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Derivations

- The application of grammar rules towards the recognition of a grammatically
valid sequence of terminals can be represented with a derivation

- Noted as a series of transformations:

*{a=Pplp] | (o,pe(TUN)) A (peR)}
- where production p is used to transform a. into 3.
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Derivation example

E

()

(E-E)

(E —id )

( id - 1d )

) / (id — id )
+E)/ (id - id )
+id ) / ( id - id )
id + id ) / ( id - id )

L R R AR VR
IdL I LI

E /
TN
SN
E + E

- In this case, we say that E % (id+id)/(id-id)
- The language generated by the grammar can be defined as:
- L(G) = {o | S%N,O/\(,o e(T)*)
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Leftmost and rightmost derivation

Leftmost
Derivation

R R R AR
VIdLI Ll

Rightmost
Derivation

IdL I LIl

I R R AR VA

id + id ) / ( id - id )
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Top-down and bottom-up parsing

- A top-down parser builds a parse tree starting at the root down to the leafs

- It builds leftmost derivations, i.e. a forward derivation proving that a sentence can be
generated from the starting symbol by using a sequence of forward applications of

productions: E = [E E / E]

[E ( E)]

/ [E E + E]
+E)/E [E id]
id [E id]

id E ) [E ( E)]

id E—-E) [E E — E]
id id - E ) [E id]
id id - id ) [E id]

m
e M M ~~
+ ~— m
m ~~

He He He He e 4
aacaaaaa

~ m
m

(
(
(
(
(
(
(
(

N 2R 2 20 I VAN

N N N
N N~~~

- A bottom-up parser builds a parse tree starting from the leafs up to the root

- It builds rightmost derivations, i.e. a reverse derivation proving that one can come to
the starting symbol from a sentence by applying a sequence of reverse applications of
productions: id + id ) / ( id - id ) [E id]

E+did ) / ( id — id ) [E > id]

E) / (id - id ) [E—> (E+E)]

/ ( id - id ) [E > ( E)]

id — id ) [E > id]

E — id ) [E — id]

E—-E) [E E - E]

E ) [E ( E)]

[E E / E]
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Tranforming extended BNF grammar constructs

- Extended BNF includes constructs for optionality and repetition.
- They are very convenient for clarity/conciseness of presentation of the grammar.

- However, they have to be removed, as they are not compatible with standard
generative parsing techniques.
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Transforming optionality and repetition

- For optionality BNF constructs:

1- Isolate productions of the form:
A - alX.. X, 1B (optionality)
2- Introduce a new non-terminal N
3- Introduce a new rule
A —> aoa NP
4- Introduce two rules to generate the optionality of N
N - X..X,
N — ¢

- For repetition BNF constructs:

1- Isolate productions of the form:
A - o{X..X }B (repetition)
2- Introduce a new non-terminal N
3- Introduce a new rule
A - o NP
4- Introduce two rules to generate the repetition of N
N - X..X, N (right recursion)
N — ¢
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Ambiguous grammars

- Which of these trees is the right one for the expression “id + id * id” ?

N

E

E
E E
I TN
E + E id E * E

id
| | | |

id id id id

N

E
* E +

R N

According to the grammar, both are right.

The language defined by this grammar is ambiguous.
That is not acceptable in a compiler.
Non-determinism needs to be avoided.
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Removing ambiguities

- Solutions:
- Incorporate operation precedence in the parser (complicates the compiler, rarely done)
- Implement backtracking (complicates the compiler, inefficient)
- Transform the grammar to remove ambiguities

- Example: introduce operator precedence in the grammar

=

»

I di Il

IdI I Ll

M 7T — 4 4 mmm

« Example: factorization
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Left recursion

- The aim is to design a parser that has no arbitrary choices to make between rules
(predictive parsing)

- In predictive parsing, the assumption is that the first rule that can apply is
applied, as there are never two different applicable rules.

« In this case, productions of the form A—Aao. will be applied forever

id + id + id

/E\

E E
SN

E E
+

I di Il

I

E

/T\

E + E
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Non-immediate left recursion

- Left recursions may seem to be easy to locate.

- However, they may be transitive, or non-immediate.
- Non-immediate left recursions are sets of productions of the form:

A — Ba | ..
B > AB | ..

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Transforming left recursion

- This problem afflicts all top-down parsers
- Solution: apply a transformation to the grammar to remove the left recursions

1- Isolate each set of productions of the form:
A = Ao, | Aay | Aas | .. (left-recursive)
A B | B Bs| . (non-left-recursive)
2- Introduce a new non-terminal A’
3- Change all the non-recursive productions on A to:
A= BA | BA | BA |
4- Remove the left-recursive production on A and substitute:
A= e | oA | A | asA | ... (right-recursive)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Example

(A > Aoy | Aay)
(A — B1)

(A")
(A > B.A")
(A —> ¢ | oA | o,A)

1- Isolate each set of productions of the form:
A - Ao | Aa, | Adas | .. (left-recursive)
A— Bl B2 Bs| (non-left-recursive)
2- Introduce a new non-terminal A’
3- Change all the non-recursive productions on A to:
A = BA | BA | BA | .
4- Remove the left-recursive production on A and substitute:
A > g | o4A" | aA” | asA” | ... (right-recursive)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design

(i) T>T=*F | T/F
T>T=*F | T/F (A - Ao, | Aa,)
T > F (A —> B1)
T (A")
T > FT’ (A > BA")
T —> ¢ | *FT" | /FT (A > ¢ | oA | aA)

| F

E' —> & | +TE' | —TE’ 1- Isolate each set of productions of the form:
A - Ao | Aa, | Adas | .. (left-recursive)

T — FT A— Bl B2 Bs| (non-left-recursive)
T > ¢ | *FT' | /FTI 2- Introduce a new non-terminal A’

. 3- Change all the non-recursive productions on A to:
F > (E) | id A > BA | BA | BA | ..
4- Remove the left-recursive production on A and substitute:
A > g | o4A" | aA” | asA” | ... (right-recursive)
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Non-recursive ambiguity

As the parse is essentially predictive, it cannot be faced with non-deterministic
choice as to what rule to apply

There might be sets of rules of the form: A — af; | aB, | afs |

This would imply that the parser needs to make a choice between different right
hand sides that begin with the same symbol, which is not acceptable

They can be eliminated using a factorization technique

1- Isolate a set of productions of the form:

A— ofs | aBy | aBs | .. (ambiguity)
2- Introduce a new non-terminal A’
3- Replace all the ambiguous set of productions on A by:

A — oA (factorization)
4- Add a set of factorized productions on A" :

A - B | B | Bs |

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Backtracking

It is possible to write a parser that implements an ambiguous grammar.

In this case, when there is an arbitrary alternative, the parser explores the
alternatives one after the other.

If an alternative does not result in a valid parse tree, the parser backtracks to the
last arbitrary alternative and selects another right-hand-side.

The parse fails only when there are no more alternatives left .

This is often called a brute-force method.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Example

S — ee | bAc | bAe
A—>d | cA

Seeking for : bcde

bAc
bcAc
bcdc
error

bAe
bcAe
bcde
OK
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Backtracking

Backtracking is tricky and inefficient to implement.

Generally, code is generated as rules are applied; backtracking involves retraction
of the generated code!

Parsing with backtracking is seldom used.
The most simple solution is to eliminate the ambiguities from the grammar.

Some more elaborated solutions have been recently found that optimize
backtracking that use a caching technique to reduce the number of generated
sub-trees [2,3,4,5].
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Predictive parsing

- Restriction: the parser must always be able to determine which of the right-hand
sides to follow, only with its knowledge of the next token in input.

- Top-down parsing without backtracking.
« Deterministic parsing.
- The assumption is that no backtracking is possible/necessary.
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Predictive parsing

- Recursive descent predictive parser
- A function is defined for each non-terminal symbol.
Its predictive nature allows it to choose the right right-hand-side.

It recognizes terminal symbols and calls other functions to recognize non-terminal
symbols in the chosen right hand side.

The parse tree is actually constructed by the nesting of function calls.
Very easy to implement.

Hard-coded: allows to handle unusual situations.

Hard to maintain.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Predictive parsing

- Table-driven predictive parser
- A parsing table tells the parser which right-hand-side to choose.

The driver algorithm is standard to all parsers.

Only the table changes when the language changes, the algorithm is universal.
Easy to maintain.

The parsing table is hard and error-prone to build for most languages.

Tools can be used to generate the parsing table.

Will be covered in next lecture.
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First and Follow sets

When parsing using a certain non-terminal symbol, predictive parsers need to
know what right-hand-side to choose, knowing only what is the next token in
input.

If all the right hand sides begin with terminal symbols, the choice is
straightforward.

If some right hand sides begin with non-terminals, the parser must know what

token can begin any sequence generated by this non-terminal (i.e. the FIRST set
of these non-terminals).

If a FIRST set contains g, it must know what may follow this non-terminal (i.e. the
FOLLOW set of this non-terminal) in order to chose an € production.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Example

TE’

+TE’ | ¢
FT’

*FT? | ¢

o | 1| (E)

FIRST(E) FOLLOW(E) = {$,)}
FIRST(E’) FOLLOW(E?) = {$,)}
FIRST(T) FOLLOW(T) = {+,$%$,)}
FIRST(T?) FOLLOW(T?) = {+,$,)}
FIRST(F) FOLLOW(F) = {*,+,%,)}

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018
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Example: Recursive descent predictive parser

error = false
Parse(){
lookahead = NextToken()
if (E();match('$')) return true
else return false}
TE’ E(){
HTE | e if (lookahead is in [@,1,(]) //FIRST(TE")
| s i (TO3E"03)
o | 1| (E) write(E->TE'")
else error = true
else error = true
10,1, (} return !error}
by e E'(Of
ot if (lookahead is in [+]) //FIRST[+TE']
fe,1,(} if (match('+');T()E'())
write(E'->TE")
($,)} else error = true
($,)) else if (lookahead is in [$,)] //FOLLOW[E"'] (epsilon)
{+,%$,)} write(E'->epsilon)
{+,%$,)} else error = true
{*,+,%,)} return 'error}
T(){
if (lookahead is in [0,1,(]) //FIRST[FT"']
if (F()5T°()3)
write(T->FT")
else error = true
else error = true
return !error}

FIRST(E)
FIRST(E’)
FIRST(T)
FIRST(T’)
FIRST(F)

FOLLOW(E)
FOLLOW(E”)
FOLLOW(T)
FOLLOW(T”)
FOLLOW(F)
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COMP 442/6421 — Compiler Design
Example: Recursive descent predictive parser

T Of
if (lookahead is in [*]) //FIRST[*FT']

TE? if (match('*');F();T'())
+TE? | & write(T'->*FT")
FT? else error = true
*FT? | ¢ else if (lookahead is in [+,),$] //FOLLOW[T"'] (epsilon)
0| 1 (E) write(T'->epsilon)
else error = true
0,1, (} return !error}
{+, &} FO{
{0,1, (} if (lookahead is in [0]) //FIRST[O]
{*, &} match('0');write(F->0)
{0,1,(} else if (lookahead is in [1]) //FIRST[1]
match('1");write(F->1)
{$,)} else if (lookahead is in [(]) //FIRST[(E)]
{$,)} if (match('(');E();match(')"))
%I’i’gi write(F->(E));
(*.+.$,)} else error = true
else error = true
return l!error}

FIRST(E)
FIRST(E’)
FIRST(T)
FIRST(T’)
FIRST(F)

FOLLOW(E)
FOLLOW(E”)
FOLLOW(T)
FOLLOW(T”)
FOLLOW(F)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design
References

C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr.,, “Crafting a Compiler”, Adison-Wesley,
2009. Chapter 4.

Frost, R., Hafiz, R. and Callaghan, P. (2007) " Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive Grammars ." 10th International
Workshop on Parsing Technologies (IWPT), ACL-SIGPARSE , Pages: 109-120,
June 2007/, Prague.

Frost, R., Hafiz, R. and Callaghan, P. (2008) "Parser Combinators for Ambiguous
Left-Recursive Grammars." 10th International Symposium on Practical Aspects
of Declarative Languages (PADL), ACM-SIGPLAN , Volume 4902/2008, Pages:
167-181, January 2008, San Francisco.

Frost, R. and Hafiz, R. (2006) "A New Top-Down Parsing Algorithm to

Accommodate Ambiguity and Left Recursion in Polynomial Time." ACM
SIGPLAN Notices, Volume 41 Issue 5, Pages: 46 - 54.

Norvig, P. (1991) “Techniques for automatic memoisation with applications to
context-free parsing.” Journal - Computational Linguistics. Volume 17, Issue 1,
Pages: 91 - 98.

DeRemer, F.L. (1969) “Practical Translators for LR(k) Languages.” PhD Thesis.
MIT. Cambridge Mass.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design
References

DeRemer, F.L. (1971) “Simple LR(k) grammars.” Communications of the ACM.
14.94-102.

Earley, J. (1986) “An Efficient Context-Free Parsing Algorithm.” PhD Thesis.
Carnegie-Mellon University. Pittsburgh Pa.

Knuth, D.E. (1965) “On the Translation of Languages from Left to Right.”
Information and Control 8. 607-639. doi:10.1016/50019-9958(65)90426-2

Dick Grune; Ceriel J.H. Jacobs (2007). “Parsing Techniques: A Practical Guide.”
Monographs in Computer Science. Springer. ISBN 978-0-387-68954-8.

Knuth, D.E. (1971) “Top-down Syntax Analysis.” Acta Informatica 1. pp79-110.
doi: 10.1007/BF00289517

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



