
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Syntactic analysis: Part I

Parsing, derivations, grammar transformation, predictive
parsing, introduction to first and follow sets

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Syntax analysis involves parsing the token sequence to identify the syntactic
structure of the program.

• The parser's output is some form of intermediate representation of the program's
structure, typically a parse tree, which replaces the linear sequence of tokens
with a tree structure built according to the rules of a formal grammar which is
used to define the language's syntax.

• This is usually done using a context-free grammar which recursively defines
components that can make up an valid program and the order in which they
must appear.

• The resulting parse tree is then analyzed, augmented, and transformed by later
phases in the compiler.

• Parsers are written by hand or generated by parser generators, such as Yacc,
Bison, ANTLR or JavaCC, among other tools.

Syntactical analysis

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Roles

• Analyze the structure of the program and its component declarations, definitions,
statements and expressions

• Check for (and recover from) syntax errors

• Drive the front-end’s execution

Syntactic analyzer

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Historically based on formal natural language
grammatical analysis (Chomsky, 1950s).

• Use of a generative grammar:

• builds sentences in a series of steps;

• starts from abstract concepts defined by a set of
grammatical rules (often called productions);

• refines the analysis down to lexical elements.

• Analyzing (parsing) consists in constructing the
way in which the sentences can be constructed by
the productions.

• Valid sentences can be represented as a parse tree.

• Constructs a proof, called a derivation, that the
grammatical rules of the language can generate
the sequence of tokens given in input.

• Most of the standard parsing algorithms were
invented in the 1960s.

• Donald Knuth is often credited for clearly
expressing and popularizing them.

Syntax analysis: history

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Donald Knuth

Noam Chomsky

Concordia University Department of Computer Science and Software Engineering

Example

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

<sentence>

<noun phrase>

<article> <noun>

the dog

<verb phrase>

<verb> <noun phrase>

<article> <noun>

gnawed the bone

<sentence> ::= <noun phrase><verb phrase>
<noun phrase> ::= article noun
<verb phrase> ::= verb <noun phrase>

Concordia University Department of Computer Science and Software Engineering

• Syntax: defines how valid sentences are formed

• Semantics: defines the meaning of valid sentences

• Some grammatically correct sentences can have no meaning
• “The bone walked the dog”

• It is impossible to automatically validate the full meaning of all syntactically valid
English sentences
• Spoken languages may have ambiguous meaning

• Programming languages must be non-ambiguous

• In programming languages, semantics is about giving a meaning by translating
programs into executables

Syntax and semantics

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• A grammar is a quadruple (T,N,S,R)

• T: a finite set of terminal symbols

• N: a finite set of non-terminal symbols

• S: a unique starting symbol (SN)

• R: a finite set of productions

•  | (,(TN))

• Context free grammars have productions of the form:

• A | (AN)((TN))

•  | (TN) is called a sentential form:
• the dog <verb> the bone

• gnawed bone <noun> the

•  | (T) is called a sentence:
• the dog gnawed the bone

• gnawed bone the the

Grammars

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• J.W. Backus: main designer of the first FORTRAN compiler

• P. Naur: main designer of the Algol-60 programming language

• non-terminals are placed in angle brackets

• the symbol ::= is used instead of an arrow

• a vertical bar can be used to signify alternatives

• curly braces are used to signify an indefinite number of repetitions

• square brackets are used to signify optionality

• Widely used to represent programming languages’ syntax

• Meta-language

Backus-Naur Form

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

Peter Naur

John Backus

Concordia University Department of Computer Science and Software Engineering

• Pascal type declarations

• Grammar in BNF:

• Example:

BNF: Example

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

<typedecl> ::= type <typedeflist>
<typedeflist> ::= <typedef> [<typedeflist>]
<typedef> ::= <typeid> = <typespec> ;
<typespec> ::= <typeid>

| <arraydef>
| <ptrdef>
| <rangedef>
| <enumdef>
| <recdef>

<typeid> ::= id
<arraydef> ::= [packed] array <lbrack> <rangedef> <rbrack> of <typeid>
<lbrack> ::= [
<rbrack> ::=]
<ptrdef> ::= ^<typeid>
<rangedef> ::= <number> .. <number>
<number> ::= <digit> [<number>]
<enumdef> ::= <lparen> <idlist> <rparen>
<lparen> ::= (
<rparen> ::=)
<idlist> ::= <ident> { , <ident> }
<recdef> ::= record <vardecllist> end ;
<vardecllist> ::= <vardecl> [<vardecllist>]
<vardecl> ::= <idlist> : <typespec> ;

type string20 = packed array[1..20] of char;
type intptr = ^integer;

floatptr = ^real;
type herb = (tarragon, rosemary, thyme, alpert);

tinyint = 1..7;
student = record

name, address : string20;
studentid : array[1..20] of integer;
grade : char;

end;;

Concordia University Department of Computer Science and Software Engineering

• Grammar for simple arithmetic expressions:

Example

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

G = (T,N,S,R),
T = {id,+,,,/,(,)},
N = {E},
S = E,
R = {E  E + E,

E  E  E,
E  E  E,
E  E / E,
E  (E),
E  id}

Concordia University Department of Computer Science and Software Engineering

• Parse the sequence: (a+b)/(ab)

• The lexical analyzer tokenizes the sequence as: (id+id)/(idid)

• Construct a parse tree for the expression:

• start symbol = root node

• non-terminal = internal node

• terminal = leaf

• production, sentential form = subtree

• sentence = tree

Example

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Starts at the root (starting symbol)

• Builds the tree downwards from:

• the sequence of tokens in input (from left to right)

• the rules in the grammar

Top-down parsing

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

E

/E E

1- Using: E  E / E

Example

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

E

/E E

()E ()E

2- Using: E  (E)

 EE+ EE

E

/E E

()E ()E

id id id id

3- Using: E  E + E
E  E  E
E  idE  E + E

E  E  E
E  E  E
E  E / E
E  (E)
E  id

(id+id)/(idid)

Concordia University Department of Computer Science and Software Engineering

• The application of grammar rules towards the recognition of a grammatically
valid sequence of terminals can be represented with a derivation

• Noted as a series of transformations:

• {  [] | (,(TN))  (R)}

• where production  is used to transform  into .

Derivations

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• In this case, we say that E  (id+id)/(idid)

• The language generated by the grammar can be defined as:

• L(G) = { | S    (T)} *
G

Derivation example

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

*
G

E  E / E [E  E / E]
 E / (E) [E  (E)]
 E / (E  E) [E  E  E]
 E / (E  id) [E  id]
 E / (id  id) [E  id]
 (E) / (id  id) [E  (E)]
 (E + E) / (id  id) [E  E + E]
 (E + id) / (id  id) [E  id]
 (id + id) / (id  id) [E  id]

 EE+ EE

E

/E E

()E ()E

id id id id

Concordia University Department of Computer Science and Software Engineering

Leftmost and rightmost derivation

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

E  E / E [E  E / E]
 E / (E) [E  (E)]
 E / (E  E) [E  E  E]
 E / (E  id) [E  id]
 E / (id  id) [E  id]
 (E) / (id  id) [E  (E)]
 (E + E) / (id  id) [E  E + E]
 (E + id) / (id  id) [E  id]
 (id + id) / (id  id) [E  id]

E  E / E [E  E / E]
 (E) / E [E  (E)]
 (E + E) / E [E  E + E]
 (id + E) / E [E  id]
 (id + id) / E [E  id]
 (id + id) / (E) [E  (E)]
 (id + id) / (E  E) [E  E  E]
 (id + id) / (id  E) [E  id]
 (id + id) / (id  id) [E  id]

Rightmost
Derivation

Leftmost
Derivation

Concordia University Department of Computer Science and Software Engineering

• A top-down parser builds a parse tree starting at the root down to the leafs

• It builds leftmost derivations, i.e. a forward derivation proving that a sentence can be
generated from the starting symbol by using a sequence of forward applications of
productions:

• A bottom-up parser builds a parse tree starting from the leafs up to the root

• It builds rightmost derivations, i.e. a reverse derivation proving that one can come to
the starting symbol from a sentence by applying a sequence of reverse applications of
productions:

Top-down and bottom-up parsing

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

 (id + id) / (id  id) [E  id]
 (E + id) / (id  id) [E  id]
 (E + E) / (id  id) [E  (E + E)]
 (E) / (id  id) [E  (E)]
 E / (id  id) [E  id]
 E / (E  id) [E  id]
 E / (E  E) [E  E - E]
 E / (E) [E  (E)]

E  E / E [E  E / E]

E  E / E [E  E / E]
 (E) / E [E  (E)]
 (E + E) / E [E  E + E]
 (id + E) / E [E  id]
 (id + id) / E [E  id]
 (id + id) / (E) [E  (E)]
 (id + id) / (E  E) [E  E  E]
 (id + id) / (id  E) [E  id]
 (id + id) / (id  id) [E  id]

Concordia University Department of Computer Science and Software Engineering

Grammar transformations

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Extended BNF includes constructs for optionality and repetition.

• They are very convenient for clarity/conciseness of presentation of the grammar.

• However, they have to be removed, as they are not compatible with standard
generative parsing techniques.

Tranforming extended BNF grammar constructs

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• For optionality BNF constructs:

• For repetition BNF constructs:

Transforming optionality and repetition

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

1- Isolate productions of the form:
A  [1…n] (optionality)

2- Introduce a new non-terminal N
3- Introduce a new rule

A   N 
4- Introduce two rules to generate the optionality of N

N  1…n

N  

1- Isolate productions of the form:
A  {1…n} (repetition)

2- Introduce a new non-terminal N
3- Introduce a new rule

A   N 
4- Introduce two rules to generate the repetition of N

N  1…n N (right recursion)
N  

Concordia University Department of Computer Science and Software Engineering

• Which of these trees is the right one for the expression “id + id * id” ?

• According to the grammar, both are right.

• The language defined by this grammar is ambiguous.

• That is not acceptable in a compiler.

• Non-determinism needs to be avoided.

Ambiguous grammars

Joey Paquet, 2000-2018

21COMP 442/6421 – Compiler Design

id id

id+ EE

E * E

E

id

id id

* EE

E + E

E
E  E + E
E  E  E
E  E  E
E  E / E
E  (E)
E  id

Concordia University Department of Computer Science and Software Engineering

• Solutions:

• Incorporate operation precedence in the parser (complicates the compiler, rarely done)

• Implement backtracking (complicates the compiler, inefficient)

• Transform the grammar to remove ambiguities

• Example: introduce operator precedence in the grammar

• Example: factorization

Removing ambiguities

Joey Paquet, 2000-2018

22COMP 442/6421 – Compiler Design

E  E + E
E  E  E
E  E  E
E  E / E
E  (E)
E  id

E  E + T
E  E  T
E  T
T  T  F
T  T / F
T  F
F  (E)
F  id

A  aB
A  aC
A  b

A  aD
A  b
D  B
D  C

id

* FT

E + T

E

T

id

F

id

F

Concordia University Department of Computer Science and Software Engineering

• The aim is to design a parser that has no arbitrary choices to make between rules
(predictive parsing)

• In predictive parsing, the assumption is that the first rule that can apply is
applied, as there are never two different applicable rules.

• In this case, productions of the form AA will be applied forever

Left recursion

Joey Paquet, 2000-2018

23COMP 442/6421 – Compiler Design

E

E + E

E + E

E + E

E + E

...

E  E + E
E  E  E
E  E  E
E  E / E
E  (E)
E  id

id + id + id

Concordia University Department of Computer Science and Software Engineering

• Left recursions may seem to be easy to locate.

• However, they may be transitive, or non-immediate.

• Non-immediate left recursions are sets of productions of the form:

Non-immediate left recursion

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

A  B | …
B  A | …

A

B 

A 

B 

A 

...

Concordia University Department of Computer Science and Software Engineering

• This problem afflicts all top-down parsers

• Solution: apply a transformation to the grammar to remove the left recursions

Transforming left recursion

Joey Paquet, 2000-2018

25COMP 442/6421 – Compiler Design

1- Isolate each set of productions of the form:
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to:

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute:

A   | 1A | 2A | 3A | ... (right-recursive)

Concordia University Department of Computer Science and Software Engineering

Example

Joey Paquet, 2000-2018

26COMP 442/6421 – Compiler Design

E  E + T | E  T | T
T  T  F | T / F | F
F  (E) | id

(i) E  E + T | E  T | T

1- E  E + T | E  T (A  A1 | A2)
E  T (A  1)

2- E (A)
3- E  TE (A  1A)
4- E   | +TE | TE (A   | 1A | 2A)

E  TE
E   | +TE | TE
T  T  F | T / F | F
F  (E) | id

1- Isolate each set of productions of the form:
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to:

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute:

A   | 1A | 2A | 3A | ... (right-recursive)

Concordia University Department of Computer Science and Software Engineering

Example

Joey Paquet, 2000-2018

27COMP 442/6421 – Compiler Design

E  TE
E   | +TE | TE
T  T  F | T / F | F
F  (E) | id

(ii) T  T  F | T / F | F

1- T  T  F | T / F (A  A1 | A2)
T  F (A  1)

2- T (A)
3- T  FT (A  1A)
4- T   | FT | /FT (A   | 1A | 2A)

E  TE
E   | +TE | TE
T  FT
T   | FT | /FT
F  (E) | id

1- Isolate each set of productions of the form:
A  A1 | A2 | A3 | … (left-recursive)
A  1 | 2 | 3 | … (non-left-recursive)

2- Introduce a new non-terminal A
3- Change all the non-recursive productions on A to:

A  1A | 2A | 3A | …
4- Remove the left-recursive production on A and substitute:

A   | 1A | 2A | 3A | ... (right-recursive)

Concordia University Department of Computer Science and Software Engineering

• As the parse is essentially predictive, it cannot be faced with non-deterministic
choice as to what rule to apply

• There might be sets of rules of the form: A  1 | 2 | 3 | …

• This would imply that the parser needs to make a choice between different right
hand sides that begin with the same symbol, which is not acceptable

• They can be eliminated using a factorization technique

Non-recursive ambiguity

Joey Paquet, 2000-2018

28COMP 442/6421 – Compiler Design

1- Isolate a set of productions of the form:
A  1 | 2 | 3 | … (ambiguity)

2- Introduce a new non-terminal A
3- Replace all the ambiguous set of productions on A by:

A  A (factorization)
4- Add a set of factorized productions on A :

A  1 | 2 | 3 | …

Concordia University Department of Computer Science and Software Engineering

Predictive parsing

Joey Paquet, 2000-2018

29COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• It is possible to write a parser that implements an ambiguous grammar.

• In this case, when there is an arbitrary alternative, the parser explores the
alternatives one after the other.

• If an alternative does not result in a valid parse tree, the parser backtracks to the
last arbitrary alternative and selects another right-hand-side.

• The parse fails only when there are no more alternatives left .

• This is often called a brute-force method.

Backtracking

Joey Paquet, 2000-2018

30COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Example

Joey Paquet, 2000-2018

31COMP 442/6421 – Compiler Design

S  ee | bAc | bAe
A  d | cA

Seeking for : bcde

S

b cA

d

c A

S

b eA

d

c A

S  bAe [S  bAe]
 bcAe [A  cA]
 bcde [A  d]
 OK

S  bAc [S  bAc]•
 bcAc [A  cA]
 bcdc [A  d]
 error

Concordia University Department of Computer Science and Software Engineering

• Backtracking is tricky and inefficient to implement.

• Generally, code is generated as rules are applied; backtracking involves retraction
of the generated code!

• Parsing with backtracking is seldom used.

• The most simple solution is to eliminate the ambiguities from the grammar.

• Some more elaborated solutions have been recently found that optimize
backtracking that use a caching technique to reduce the number of generated
sub-trees [2,3,4,5].

Backtracking

Joey Paquet, 2000-2018

32COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Restriction: the parser must always be able to determine which of the right-hand
sides to follow, only with its knowledge of the next token in input.

• Top-down parsing without backtracking.

• Deterministic parsing.

• The assumption is that no backtracking is possible/necessary.

Predictive parsing

Joey Paquet, 2000-2018

33COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Recursive descent predictive parser

• A function is defined for each non-terminal symbol.

• Its predictive nature allows it to choose the right right-hand-side.

• It recognizes terminal symbols and calls other functions to recognize non-terminal
symbols in the chosen right hand side.

• The parse tree is actually constructed by the nesting of function calls.

• Very easy to implement.

• Hard-coded: allows to handle unusual situations.

• Hard to maintain.

Predictive parsing

Joey Paquet, 2000-2018

34COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Table-driven predictive parser

• A parsing table tells the parser which right-hand-side to choose.

• The driver algorithm is standard to all parsers.

• Only the table changes when the language changes, the algorithm is universal.

• Easy to maintain.

• The parsing table is hard and error-prone to build for most languages.

• Tools can be used to generate the parsing table.

• Will be covered in next lecture.

Predictive parsing

Joey Paquet, 2000-2018

35COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

First and Follow sets

Joey Paquet, 2000-2018

36COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• When parsing using a certain non-terminal symbol, predictive parsers need to
know what right-hand-side to choose, knowing only what is the next token in
input.

• If all the right hand sides begin with terminal symbols, the choice is
straightforward.

• If some right hand sides begin with non-terminals, the parser must know what
token can begin any sequence generated by this non-terminal (i.e. the FIRST set
of these non-terminals).

• If a FIRST set contains , it must know what may follow this non-terminal (i.e. the
FOLLOW set of this non-terminal) in order to chose an  production.

First and Follow sets

Joey Paquet, 2000-2018

37COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Example

Joey Paquet, 2000-2018

38COMP 442/6421 – Compiler Design

FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E  TE’
E’  +TE’ | 
T  FT’
T’  *FT’ | 
F  0 | 1 | (E)

Concordia University Department of Computer Science and Software Engineering

Example: Recursive descent predictive parser

Joey Paquet, 2000-2018

39COMP 442/6421 – Compiler Design

error = false
Parse(){

lookahead = NextToken()
if (E();match('$')) return true
else return false}

E(){
if (lookahead is in [0,1,(]) //FIRST(TE')

if (T();E'();)
write(E->TE')

else error = true
else error = true
return !error}

E'(){
if (lookahead is in [+]) //FIRST[+TE']

if (match('+');T();E'())
write(E'->TE')

else error = true
else if (lookahead is in [$,)] //FOLLOW[E'] (epsilon)

write(E'->epsilon)
else error = true
return !error}

T(){
if (lookahead is in [0,1,(]) //FIRST[FT']

if (F();T'();)
write(T->FT')

else error = true
else error = true
return !error}

FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E  TE’
E’  +TE’ | 
T  FT’
T’  *FT’ | 
F  0 | 1 | (E)

Concordia University Department of Computer Science and Software Engineering

Example: Recursive descent predictive parser

Joey Paquet, 2000-2018

40COMP 442/6421 – Compiler Design

T'(){
if (lookahead is in [*]) //FIRST[*FT']

if (match('*');F();T'())
write(T'->*FT')

else error = true
else if (lookahead is in [+,),$] //FOLLOW[T'] (epsilon)

write(T'->epsilon)
else error = true
return !error}

F(){
if (lookahead is in [0]) //FIRST[0]

match('0');write(F->0)
else if (lookahead is in [1]) //FIRST[1]

match('1');write(F->1)
else if (lookahead is in [(]) //FIRST[(E)]

if (match('(');E();match(')'))
write(F->(E));

else error = true
else error = true
return !error}

}

FIRST(E) = {0,1,(}
FIRST(E’) = {+, }
FIRST(T) = {0,1,(}
FIRST(T’) = {*, }
FIRST(F) = {0,1,(}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

E  TE’
E’  +TE’ | 
T  FT’
T’  *FT’ | 
F  0 | 1 | (E)

Concordia University Department of Computer Science and Software Engineering

1. C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., “Crafting a Compiler”, Adison-Wesley,
2009. Chapter 4.

2. Frost, R., Hafiz, R. and Callaghan, P. (2007) " Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive Grammars ." 10th International
Workshop on Parsing Technologies (IWPT), ACL-SIGPARSE , Pages: 109-120,
June 2007, Prague.

3. Frost, R., Hafiz, R. and Callaghan, P. (2008) "Parser Combinators for Ambiguous
Left-Recursive Grammars." 10th International Symposium on Practical Aspects
of Declarative Languages (PADL), ACM-SIGPLAN , Volume 4902/2008, Pages:
167-181, January 2008, San Francisco.

4. Frost, R. and Hafiz, R. (2006) "A New Top-Down Parsing Algorithm to
Accommodate Ambiguity and Left Recursion in Polynomial Time." ACM
SIGPLAN Notices, Volume 41 Issue 5, Pages: 46 - 54.

5. Norvig, P. (1991) “Techniques for automatic memoisation with applications to
context-free parsing.” Journal - Computational Linguistics. Volume 17, Issue 1,
Pages: 91 - 98.

6. DeRemer, F.L. (1969) “Practical Translators for LR(k) Languages.” PhD Thesis.
MIT. Cambridge Mass.

References

Joey Paquet, 2000-2018

41COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

7. DeRemer, F.L. (1971) “Simple LR(k) grammars.” Communications of the ACM.
14. 94-102.

8. Earley, J. (1986) “An Efficient Context-Free Parsing Algorithm.” PhD Thesis.
Carnegie-Mellon University. Pittsburgh Pa.

9. Knuth, D.E. (1965) “On the Translation of Languages from Left to Right.”
Information and Control 8. 607-639. doi:10.1016/S0019-9958(65)90426-2

10. Dick Grune; Ceriel J.H. Jacobs (2007). “Parsing Techniques: A Practical Guide.”
Monographs in Computer Science. Springer. ISBN 978-0-387-68954-8.

11. Knuth, D.E. (1971) “Top-down Syntax Analysis.” Acta Informatica 1. pp79-110.
doi: 10.1007/BF00289517

References

Joey Paquet, 2000-2018

42COMP 442/6421 – Compiler Design

