
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design
COMP 442/6421 --- Winter 2018

Contact Information

name: Dr. Joey Paquet
office: EV 3.221
phone: (514) 848-2424 ext. 7831
office hours: Tuesdays 10:00-12:00
e-mail:
www:

paquet@encs.concordia.ca
www.cse.concordia.ca/~paquet

Schedule
lectures LECT NN M------ 17:45-20:15 H 433 Paquet, Joey paquet@encs.concordia.ca
laboratories LAB NN NI M------ 20:30-22:20 H 403 TBD
 LAB NN NJ M------ 15:45-17:30 H 403 TBD
 LAB NN NK M------ 20:30-22:20 H 633-1 TBD

Calendar Description
Prerequisites (COMP442): COMP228 or SOEN228 or COEN311; COMP335; COMP352 or COEN352;
(COMP6421) : COMP5201, COMP5361; COMP5511. Compiler organization and implementation: lexical analysis
and parsing, syntax-directed translation, code optimization. Run-time systems. A project.

Course outline
This course is oriented on the design and implementation of a compiler. Most lectures are directly related to the
project. Assignments sequentially cover all the implementation steps of the compiler. The final examination is
used to assess the students’ theoretical understanding of the material covered in class, which is a fundamental
component of this course.

Grading
The evaluation will be based on assignments (4X10%), final project demonstration (30%), and a final examination
(30%). Late assignments are assessed a penalty of 50% for each late working day. In all assignments, good
design of programs, documentation, and proper testing carry considerable weight. At the end of the course, each
student must demonstrate the capabilities of the complete compiler. The final examination covers all material
covered in class. The grading scheme used is the same for all students, undergraduate or graduate. The numeric-
to-letter grading conversion is made according the class average.

Textbooks
Main Reference
C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley, 2009.
Other Relevant Sources
T.W. Parsons. Introduction to Compiler Construction, W.H. Freeman and Company, 1992.
A.V. Aho, R. Sethi and J.D. Ullman. Compilers, Principles, Techniques, and Tools, Addison-Wesley, 1986.
K.C. Louden. Compiler Construction: Principles and Practice, International Thomson Publishing Inc., 1997.
Other sources cited in the course slides.

Project Details
The project is about the design and implementation of a compiler for a simple programming language. The project
is divided into four assignments. Each assignment corresponds to the design and implementation of a major
component of the compiler, and makes use of the code base of all previous assignments. Thus, the project
involves a substantial amount of incremental coding. You can write the compiler in any language you are
proficient with. You are not allowed to use compiler-generation tools. You are allowed to use any computer that is
available to you for the implementation. However, you must do the final project demonstration in the allocated
laboratory. The project is due on the last week of classes, where final project demonstrations are to be done
individually. No extensions of this deadline is possible. Students are encouraged to discuss the design and
implementation issues of the project among them. However, each student must work on his/her individual
implementation of the project. Note that you are responsible for the design of a complete set of tests for each part
of the project. You are encouraged to cooperate with other students on this matter. Completeness of testing will
be a major issue in the grading of the assignments and the project.

Graduate Attributes
As part of either the Computer Science or Software Engineering program curriculum, the content of this course
includes material and exercises related to the teaching and evaluation of graduate attributes. Graduate attributes
are skills that have been identified by the Canadian Engineering Accreditation Board (CEAB) and the Canadian
Information Processing Society (CIPS) as being central to the formation of Engineers, computer scientists and
information technology professionals. As such, the accreditation criteria for the Software Engineering and
Computer Science programs dictate that graduate attributes are taught and evaluated as part of the courses. The
following is a description of the list of graduate attributes covered in this course, along with a description of how
these attributes will be incorporated in the course.

Knowledge base: Compilation process. Parsing techniques such as CLR, SLR, LALR, recursive descent and
table-driven predictive parsing. Syntax-directed translation, intermediate translation languages, symbol tables.
Grammars, attribute grammars, attribute migration, grammar transformation. Structure and functioning of run-time
systems.
Problem analysis: Determine appropriate parsing and compilation techniques to be applied for different
language constructs. Grammar analysis and transformation.
Design: Design and implement a full compiler including lexical analysis, parsing, semantic analysis, code
generation, and run-time system.
Use of tools: Use of an appropriate tools, programming language and libraries for the development of a full
implementation of a compiler. Use of analysis tools to transform/validate lexical and grammatical specifications.
Communication skills: Deliver the final project in an oral presentation.

Learning Outcomes
Demonstrate knowledge of the theory involved in compilers and its practical implementation. [ind. 1.3]

Identify, formulate, and develop theoretical models of different parts of a compiler. [ind. 2.1, 2.2]

Develop a compiler design adapted to the language as specified. [ind. 4.3]

Implement and test a compiler. [ind. 4.4]

Demonstrate operational use of appropriate tools, language, and libraries to implement a compiler. [ind. 5.1, 5.2]

Deliver an operational product demonstrated to respect specifications and design constraints. [ind. 7.4]

