Concordia University
Department of Computer Science
and Software Engineering

Comparative Study of Programming Languages
COMP 6411 --- Winter 2013

Programming assignment #1

Deadline: Wednesday January 30", 2013
Evaluation: 10% of final mark
Late submission: not accepted

Problem statement

You have to implement three different sorting algorithms. Each algorithm must be first presented abstractly using
pseudo-code. Each of them must be implemented in two different programming languages (for a total of six
programs). Each implementation must comply with the presented pseudo-code. The sorting algorithms and the
programming languages you use are left to your discretion, given the following restrictions:

For the programming languages used, you must choose one from each of the following two lists:
C, C#, Python, ML, Smalltalk
Java, Scheme, Fortran, C++, PHP, Haskell, Perl, Ada, Objective-C, AspectJ, Ruby, VisualBasic, Prolog, Pascal.

The sorting algorithms that you use must be selected from the list presented on the following web page:
http://people.cs.ubc.ca/~harrison/Java/sorting-demo.html. This page is also giving you sample Java code for their
implementation, you are allowed to use this Java code for this assignment. The page also gives you an animated
view of the functioning of the algorithms. You are not expected to provide such an animated view.

In order to enable better comparison and testing of the programs, each implemented algorithm must read the list
of elements to be sorted from a file, and each program must output the sorted result to a file, along with various
statistics on the execution time, memory consumption, etc that will eventually enable you to make a comparison
of the run-time execution of the different algorithms implemented in different programming languages. You will be
judged also on the difference of languages used, e.g. using two object-oriented languages is not good, using
languages belonging to different programming language paradigms is best.

In order to measure the execution times, memory consumption, as well as other factors that you find relevant, you
have to either instrument your own programs or use a third-party solution to measure externally the execution. No
matter what measuring solutions you are using, it must not interfere with the execution of the programs in a way
as to invalidate the measurements. The same measuring technique or tools must be used throughout in order for
the comparisons to be valid. It is up to you to figure out what you are measuring and how. You are expected to
conduct a series of runs using different data sets in order to be able to draw some curve diagrams showing
different execution times and memory consumption over a significant range of number of data elements to be
sorted (e.g. sort 100, 1,000, 10,000, 100,000, 1,000,000 elements). Some sample input files are available at the
following link:

http://newton.cs.concordia.ca/~paquet/teaching/6411/assignment1.samplelnput. COMP6411.2013.4.zip




Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 1”. Late assignments are not accepted. The file
submitted must be a .zip file containing:

« all your code (i.e. six different programs)

+ one input file containing data to be read and sorted by the programs

+ one output file for each program containing the sorted result, as well as relevant statistics on the execution
(minimally: execution time and memory consumption)

+ a simple document containing:
+ the pseudo-code of the three algorithms implemented
+ instructions on how to compile and execute all your programs
+ presentation of the execution results in tabular and graph form
+ explanations as to why the two experiments lead to different results, i.e. what characteristics of the two

programming languages and their implementation lead to differences in execution for the same algorithms.

+ alist of references used to gather information about the two languages’ implementation details.

You are also responsible to give proper compilation and execution instructions to the marker in a README file. If
the marker cannot compile and execute your programs, you might have to have a meeting for a demonstration.

Evaluation Criteria

Correctness of pseudo-code description 1pt

Correctness of implementations vs. pseudo-code 2 pts
Input/output from/to a file 2 pts
Output of relevant statistics enabling comparison 3 pts
Choice of languages 3 pts
Presentation, analysis and explanations of results 5 pts
References 4 pts

Total 20 pts



