
©
 Joey Paquet 2002.

 Slide 1

Softw
are D

esign

©
 Joey Paquet 2002.

 Slide 2

Softw
are D

esign
u

A
ccording to the W

aterfall m
odel, D

esign should be
undertaken for the w

hole system
 in one shot.

u
In m

ost cases, this is im
practical, rather use an

increm
ental w

ay of designing.
u

D
esign the core or architecture of the system

u
W

hile (system
 incom

plete) do
u

D
esign one part com

pletely
u

C
ode and test that part

u
Perm

its a better use of resources if needed
u

R
isk: degradation of system

 structure through iterations
u

O
verhead required to m

ake each part run separately.

©
 Joey Paquet 2002.

 Slide 3

C
onceptual D

esign
u

T
he conceptual design answ

ers questions such as these:
u

W
here w

ill the data com
e from

?
u

W
hat w

ill happen to the data in the system
?

u
W

hat w
ill the system

 look like to users?
u

W
hat choices w

ill be offered to users?
u

W
hat is the tim

ing of events?
u

W
hat w

ill the reports and screens look like?

u
A

 good conceptual design should have the follow
ing

characteristics:
u

It is w
ritten in the client's language.

u
It contains no technical jargon.

u
It describes the functions of the system

.
u

It is independent of im
plem

entation.
u

It is linked w
ith the requirem

ents docum
ents.

©
 Joey Paquet 2002.

 Slide 4

C
onceptual D

esign
u

Problem
: there doesn't seem

 to be m
uch difference

betw
een the conceptual design and the requirem

ents! T
he

difference is this:
u

T
he requirem

ents describe w
hat is required.

u
T

he conceptual design describes w
hat w

ill be provided.
u

H
ere is a sim

ple exam
ple:

u
R

equirem
ent: the user m

ust be able to open a file.
u

C
onceptual design: the user opens a file by perform

ing the follow
ing

actions.
u

Select F
ile from

 the m
ain m

enu. System
 displays a list of files.

u
Select a file.

u
Select O

K
 or C

A
N

C
E

L
.

u
B

oth can be used as contracts betw
een supplier and client.

©
 Joey Paquet 2002.

 Slide 5

T
echnical D

esign

u
D

escription of the hardw
are and softw

are
com

ponents and their functions
u

D
escription of data structures and data flow

.

u
U

sually show
s how

 the conceptual design can be im
plem

ented
by a collection of com

ponents.
u

E
ach com

ponent has an interface.
u

C
om

ponents interact through their interfaces.

©
 Joey Paquet 2002.

 Slide 6

W
asserm

an’s C
lassification

u
W

asserm
an suggested that designs are created in

one of five w
ays.

u
E

ach w
ay has a high-level description and a low

-
level description.

©
 Joey Paquet 2002.

 Slide 7

W
asserm

an’s C
lassification

u
M

odular D
ecom

position. A
ssign functions to

com
ponents.

u
H

igh-level description: functions to be im
plem

ented.
u

L
ow

-level description: how
 com

ponent w
orks and relates to other

com
ponents.

u
D

ata-oriented D
ecom

position. O
rganize design around

principal data structures.
u

H
igh-level description: general data structures.

u
L

ow
-level description: w

hat data elem
ents store and how

 they are
related.

u
E

vent-oriented D
ecom

position. O
rganize design around

the events that the system
 m

ust handle.
u

H
igh-level description: states and events.

u
L

ow
-level description: how

 state transitions occur.

©
 Joey Paquet 2002.

 Slide 8

W
asserm

an’s C
lassification

u
O

utside-in D
esign. O

rganize the design around user
inputs, treating the system

 as a “black box”.
u

H
igh-level description: a list of all user inputs.

u
L

ow
-level description: responses of system

 to inputs.

u
O

bject-oriented D
esign. O

rganize the design around
objects and the relations betw

een them
.

u
H

igh-level description: list of classes and the relationships.
u

L
ow

-level description: attributes and m
ethods of each class.

©
 Joey Paquet 2002.

 Slide 9

W
asserm

an’s C
lassification

u
C

om
m

ents on W
asserm

an's classification:
u

T
he categories overlap: an actual design could m

atch several of them
.

u
D

ifferent strategies are useful for different kinds of problem
s.

u
M

odular decom
position and outside-in design are not recom

m
ended.

T
hey are both based on top-dow

n techniques that are fairly effective
for sm

all applications but do not w
ork w

ell for large applications.

u
D

ata-oriented design has been largely subsum
ed by object-oriented

design.

u
E

vent-oriented design should usually be com
bined w

ith som
ething else

--- typically, object oriented design.

u
O

bject oriented design is currently dom
inant.

©
 Joey Paquet 2002.

 Slide 10

Softw
are A

rchitectural D
esign

©
 Joey Paquet 2002.

 Slide 11

Softw
are A

rchitecture
u

If w
e think in term

s of “building softw
are”, the idea that a

softw
are product has an “architecture” is natural.

u
“A

rchitecture” is just another nam
e for the overall

organization of the softw
are.

u
T

he im
portance of softw

are architecture, and the num
ber

of varieties of softw
are architecture, have been realized

and exploited only recently.

u
A

rchitecture styles are m
ost often com

bined.

u
Som

e architectural styles are:

©
 Joey Paquet 2002.

 Slide 12

H
ierarchical A

rchitecture
u

A
 hierarchical architecture has the form

 of a tree in w
hich

the root is the “m
ain program

” and the leaves are
prim

itive functions (that is, functions that do not call
other functions). Interm

ediate nodes of the tree are
functions that call and are called by other functions.

u
H

ierarchical organization is usually the result of top-dow
n

design: a problem
 is recursively decom

posed into sm
aller

and sm
aller parts. H

ierarchies have several
disadvantages:

u
they are designed to perform

 a single function (the “m
ain program

”);
u

they are organized around control flow
 (functions calling functions) ---

data tends to be neglected;
u

the “leaf” functions are very specialized and usually cannot be used in
any other applications.

©
 Joey Paquet 2002.

 Slide 13

L
ayered A

rchitecture
u

C
om

ponents arranged in layers.
u

T
he low

est layers perform
 the sim

plest, m
ost concrete tasks

u
H

igher layers perform
 progressively m

ore com
plex and abstract tasks, using the

low
er level(s) functionalities.

u
T

he top layer is often effectively the user interface of the system
.

u
G

eneralization of the hierarchy.
u

M
ost actual hierarchies are actually layered because leaf nodes are shared by

higher-level nodes.

u
A

 higher layer m
ay use the services of its ow

n layer and low
er layers

but a low
er layer m

ay not use the services of a higher layer.
u

In som
e system

s, there is a stronger constraint: a layer can use services only of
the layer just below

 it

u
O

perating system
s are often constructed in layers.

u
Som

etim
es described as rings, e.g. M

U
L

T
IC

S.

©
 Joey Paquet 2002.

 Slide 14

Pipes and Filters A
rchitecture

u
P

ipe: C
hannel that connects tw

o softw
are com

ponents;
one com

ponent produces data and the other consum
es the

data.

u
F

ilter: C
om

ponent that inputs data from
 one or m

ore
places, processes the data in som

e w
ay, and outputs it to

other places.

u
System

s are built by using pipes as connectors betw
een

com
ponents.

u
E

xam
ple: U

N
IX

 pipes: $ w
ho | pr -3 | lpr

u
D

ataflow
 approach

©
 Joey Paquet 2002.

 Slide 15

E
vent-O

riented A
rchitecture

u
T

raditional architectures assum
e that the flow

 of control is
determ

ined by the program
m

er.
u

E
vent-oriented architectures assum

e that any event can
occur at any tim

e.
u

T
hey are often separated into a layer that is sensitive to

events and a layer that processes the events.
u

T
he processing layer m

ust provide the event-handling
layer w

ith pointers to a set of functions called callback
functions.

u
W

hen an even occurs, the event handling layer detects it,
selects the appropriate callback function, and invokes it.

u
E

xam
ple: w

indow
 system

©
 Joey Paquet 2002.

 Slide 16

R
epository A

rchitecture
u

System
 organized around a collection of data that is

shared by m
any processes.

u
E

xam
ple: Som

e softw
are developm

ent environm
ents

(SD
E

s) are organized around a repository that holds
source code, com

piled code, executables, sym
bol tables,

docum
entation, and other artifacts related to softw

are
developm

ent. T
he SD

E
 provides a set of tools --- editor,

com
piler, debugger, revision control, docum

entation
m

anager, etc. --- that exam
ine and update the data in the

repository.

©
 Joey Paquet 2002.

 Slide 17

C
lient-Server A

rchitecture
u

A
 client system

 issues a request that is handled by a
server system

 that provides services to its clients
u

Suitable for m
ost transaction-oriented system

s.
u

E
xam

ple: T
he server m

ight provide a sim
ple service, such

as storing files for a com
m

unity of users, or a m
ore

com
plex service, such as booking airlines seats for

custom
ers.

©
 Joey Paquet 2002.

 Slide 18

“O
bject-O

riented A
rchitecture”

u
T

he object oriented paradigm
 is som

etim
es

referred to as an “architecture”.

u
O

bject-orientation is a paradigm
, and is really

m
ore general than that.

u
M

ost architectures (including those listed here)
can be im

plem
ented in an object oriented w

ay.

©
 Joey Paquet 2002.

 Slide 19

Softw
are D

esign D
ocum

entation

©
 Joey Paquet 2002.

 Slide 20

D
esign D

ocum
entation

u
A

 typical set of design docum
ents includes:

u
T

he C
onceptual D

esign: description, in non-technical
language, of the w

ays in w
hich the system

 w
ill m

eet the
client's requirem

ents.
u

T
he T

echnical D
esign: a docum

ent in tw
o parts.

u
T

he System
 A

rchitecture (also know
n as the H

igh L
evel D

esign):
u

description of each com
ponent of the system

u
diagram

s show
ing how

 the com
ponents are related

u
T

he D
etailed D

esign:
u

a description of each com
ponent. (data structures, functions)

u
enough detail to enable a program

m
er to w

rite code

u
Should include the rationale of each design elem

ents

©
 Joey Paquet 2002.

 Slide 21

G
ood D

esign

Q
ualities and T

echniques to A
chieve T

hem

©
 Joey Paquet 2002.

 Slide 22

G
ood D

esign
u

W
hat is a good building?

u
H

ow
 do w

e create a good building?

u
H

ow
 do w

e tell if a design is good or bad?
u

H
ow

 do w
e create a good design?

u
N

ot easy to answ
er, even w

orse for softw
are.

u
First step is a good architecture.

u
T

hen, try to arrange thing orderly.

©
 Joey Paquet 2002.

 Slide 23

D
esign Q

ualities

©
 Joey Paquet 2002.

 Slide 24

M
odularity

u
A

 good design usually consists of a collection of
w

ell-defined, discrete com
ponents or m

odules.
u

T
here are various w

ays of organizing the m
odules

(softw
are architecture)

u
T

he im
portant thing is to avoid a jum

ble of
classes connected in arbitrary w

ays.
u

Several levels of abstraction in m
odularity.

©
 Joey Paquet 2002.

 Slide 25

C
ohesion

u
A

 m
odule is cohesive, or has high cohesion, if its internal

parts are closely related tow
ards the achievem

ent of a
clear purpose.

u
E

very sub-com
ponent is w

orking tow
ards this goal.

u
A

 sim
ple test of cohesion is to try to describe the m

odule
concisely.

u
T

here are several levels of cohesion

©
 Joey Paquet 2002.

 Slide 26

C
ohesion

u
C

oincidental:
u

parts are unrelated to one another

u
L

ogical:
u

logically related functions or data elem
ents are placed in the sam

e
com

ponent. E
.g. all “input” features are put in the sam

e com
ponent,

either from
 files, or from

 the netw
ork.

u
T

em
poral:

u
functions that are executed in sequence are put in a com

ponent. E
.g.

system
 initialization procedures.

u
Procedural:

u
functions that sequentially aim

 at the production of a result are put in
the sam

e com
ponent. E

.g. capture the data, validate, create a record,
and save it.

©
 Joey Paquet 2002.

 Slide 27

C
ohesion

u
C

om
m

unicational:
u

functions are associated because they operate on or produce the sam
e

data set. E
.g. book inventory is used for both accounting and m

anaging
orders.

u
Sequential:

u
the output from

 one part of a com
ponent is input to the next part. E

.g.
com

pilers.

u
Functional:

u
every processing elem

ent is essential to the perform
ance of a single

functionality, and all essential elem
ents are contained in one

com
ponent.

u
A

 functionally cohesive com
ponent not only perform

s the functionality
for w

hich it is designed, but also perform
s only that functionality and

nothing else.
u

It is thus m
ore likely that changing this particular functionality w

ill
affect only one com

ponent.

©
 Joey Paquet 2002.

 Slide 28

C
oupling

u
T

w
o m

odules are coupled if they depend on each other in
any w

ay.
u

A
s w

ith cohesion, there are various degrees of coupling.
u

U
nlike cohesion, less coupling is better.

u
Is it possible to have N

O
 coupling at all?

u
H

igh cohesion and low
 coupling is a great goal to reach

u
E

xam
ple: façade pattern

©
 Joey Paquet 2002.

 Slide 29

C
oupling

u
C

ontent :
u

one com
ponent actually m

odifies another. E
.g. one com

ponent
m

odifies an internal data item
 in another com

ponent, or w
hen one

com
ponent branches into the m

iddle of another com
ponent.

u
C

om
m

on :
u

data are accessible from
 a central store in both com

ponents. E
.g. global

variables. it can be difficult to determ
ine w

hich com
ponent is

responsible for having set a variable to a particular value.

u
C

ontrol :
u

one com
ponent passes param

eters to control the execution of another
com

ponent. E
.g. setting a “flag”. Som

etim
es acceptable, but should

m
inim

ize the am
ount of controlling inform

ation that m
ust be passed

from
 one com

ponent to another and to localize control to a fixed and
recognizable set of param

eters form
ing a w

ell-defined interface.

©
 Joey Paquet 2002.

 Slide 30

C
oupling

u
Stam

p :
u

a data structure is used to pass inform
ation from

 one com
ponent to

another, and the w
hole data structure is passed. B

ad if som
e of the data

is not used.

u
D

ata :
u

a restriction of stam
p coupling, w

here data is passed to the called
com

ponent, but w
here only the necessary inform

ation is passed.
Ideally, all inform

ations are passed as separate param
eters, even

though they com
e from

 the sam
e data structure.

u
U

ncoupled :
u

no interconnections at all. Possible?

©
 Joey Paquet 2002.

 Slide 31

Inform
ation H

iding

u
In a fam

ous paper w
ritten in 1972, D

avid Parnas set out
the principles of inform

ation hiding:
u

“The developer of a softw
are com

ponent m
ust be provided w

ith all the
inform

ation necessary to carry out the given responsibilities assigned
to the com

ponent, and should be provided w
ith no other inform

ation.”

u
H

ighly related to cohesion and coupling, but sufficiently
im

portant to be separated from
 them

.

u
If designers do not follow

 the principles of inform
ation

hiding, the system
 w

ill contain hidden dependencies that
w

ill m
ake m

aintenance a nightm
are.

©
 Joey Paquet 2002.

 Slide 32

Fault T
olerance

u
A

 good design should be tolerant of both external and
internal errors.

u
It is im

portant but straightforw
ard to protect the system

against m
ost external errors. T

he key step is to validate
all inputs to the system

 carefully, so that the system
rejects inappropriate data and processes only “good” data.

u
E

ven after validation, internal errors m
ay still cause the

system
 to fail. D

ividing by zero or com
puting the square

root of a negative num
ber causes m

ost processes to raise a
signal. If the signal is not handled and processed
correctly, the system

 m
ay crash.

©
 Joey Paquet 2002.

 Slide 33

Sim
plicity

u
A

lw
ays choose the sim

plest design w
hen a choice com

es
in. (if both designs m

eet the requirem
ents)

u
D

esigner should try to rem
ove all unnecessary com

plexity
from

 the system
.

u
Sim

plifying is hard and requires experience.
u

E
xam

ples:
u

a design diagram
 is hard to read if it contains m

any crossing lines. If
you redraw

 it to reduce the num
ber of intersections, you w

ill
understand it better and m

ay be able to sim
plify it.

u
A

 large num
ber of links to a class m

ay indicate low
 cohesion or high

coupling. Increasing cohesion and reducing coupling w
ill tend to

sim
plify a design.

u
D

on't w
orry about efficiency during design.

©
 Joey Paquet 2002.

 Slide 34

T
ips &

 T
echniques to A

chieve
D

esign Q
uality

©
 Joey Paquet 2002.

 Slide 35

Prototyping
u

If you are not sure w
hether a design w

ill actually w
ork, it

m
ay be a good idea to prototype it.

u
T

his m
eans im

plem
enting the design in a “quick and

dirty” w
ay.

u
D

on't invest a lot of tim
e in program

m
ing, but get

som
ething running that is just enough to validate the

design.
u

B
e very careful if you reuse the prototype code in the

operational version.

©
 Joey Paquet 2002.

 Slide 36

D
ividing R

esponsibilities

u
A

 useful principle in object oriented design is that
responsibilities should be divided evenly betw

een
classes.

u
A

 system
 in w

hich one class does all the w
ork

and the other classes m
erely store data is

probably badly designed.

©
 Joey Paquet 2002.

 Slide 37

D
esign R

ationale

u
D

uring the design process, the designers discuss
m

any alternatives and reject all but one.

u
It is im

portant to include the reasoning in the
design so that m

aintainers do not w
aste tim

e
im

plem
enting the rejected alternatives in the hope

of im
proving the system

.

©
 Joey Paquet 2002.

 Slide 38

E
fficiency &

 D
esign

u
D

esign requires com
prom

ising. T
here are m

any trade-
offs to be m

ade during design
u

A
 good designer is a person w

ho has a good feeling for
w

hat is im
portant and w

hat is not.
u

A
 com

m
on m

istake is to place too m
uch em

phasis on
efficiency, w

hich is not ever-present:
u

W
hat are the tim

e-critical aspects of the system
?

u
H

ow
 can w

e ensure that the critical tim
e constraints are satisfied?

u
W

hen w
e have answ

ered these questions, w
e can forget

about efficiency and concentrate on other aspects of good
design.

u
A

 useful rule of thum
b is that 90%

 of the tim
e is spent

executing 10%
 of the code.

©
 Joey Paquet 2002.

 Slide 39

Sum
-U

p: Steps to G
ood D

esign
u

Increm
ents. Start w

ith any design, and im
prove it.

u
Inform

ation H
iding. For each class, ask: w

hat
inform

ation does it hide? Should it hide m
ore or less

inform
ation?

u
C

oupling. W
hich classes are highly-coupled (i.e., have

m
any dependencies w

ith other classes)? Is the coupling
necessary? H

ow
 can it be reduced?

u
C

ohesion. C
an each m

odule be describe in one sentence?
D

oes each class have a cohesive set of functions? Is
every function needed? A

re m
ore functions needed?

u
T

rade-offs. B
alance efficiency against abstraction,

sim
plicity, and coupling --- assum

ing that in m
ost

situations, efficiency is less im
portant than the other

factors.

©
 Joey Paquet 2002.

 Slide 40

D
esign R

eview
s

©
 Joey Paquet 2002.

 Slide 41

D
esign R

eview
s

u
R

eview
ing is an im

portant part of softw
are engineering

(and engineering in general).
u

A
ny product of developm

ent can be review
ed:

u
requirem

ents, specification, design, im
plem

entation, test results, etc.

u
R

eview
ing is generally perform

ed by a review
 team

u
people responsible for the product

u
others w

ho can study the product w
ith fresh eyes.

u
including the authors m

ight not be desirable

u
It is im

portant that review
ing is an “egoless” activity.

u
A

 review
ing team

 does not usually correct the errors that
its m

em
bers find. Instead, the view

s of the team
 are

recorded accurately.

©
 Joey Paquet 2002.

 Slide 42

D
esign R

eview
s

u
T

he prelim
inary design review

 :
u

m
eeting of clients and suppliers

u
the conceptual design is review

ed and approved by the clients.

u
T

he critical design review
 :

u
m

eeting of designers.
u

requirem
ents team

 (som
etim

es called “analysts”) m
ay also be present

u
ensure that the conceptual and technical designs are free of defects and
m

eet the requirem
ents

u
T

he program
 design review

 :
u

m
eeting of designers and developers.

u
ensure that the detailed design is feasible

u
the im

plem
entation team

 w
ill be able to understand it.

©
 Joey Paquet 2002.

 Slide 43

D
esign R

eview
s

u
A

ll of these review
s are im

portant.
u

In a sm
all project, how

ever, the first tw
o w

ould be fairly brief
and inform

al.

u
T

he program
 design review

 is the m
ost im

portant and should be
carried out carefully, even for a sm

all project.

u
R

eview
s are useful: consider including review

s in
your project.

