
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2014

Assignment 3, Semantic Analysis

Deadline: Monday March 24th, 2014
Evaluation: 10% of final grade
Late submission: penalty of 50% for each late working day

In this assignment, you are to implement a symbol table support for the language described in assignment 2. Its
aim is to resolve the typing and cross-referencing of your identifiers, taking into consideration the scoping of your
identifiers. As you can see from the syntax, this language resembles C++:

 A program consists of a main function (the program function) that uses a set of free functions. Any function

used must be defined before it is called. If not, an error message is issued that notices that the function
called is undefined.

 Classes, that represent the encapsulation of a user defined data type and its functions, are defined before
the program function. Each class must be defined before it is used either as a data member in another

class, or in any function definition. If not, an error message is issued that notices that the data type is
undefined.

 In functions, (including member functions in classes) variables are defined before the statements. It is not
allowed to have variable definitions intertwined with statements. Any variable used in a function must be
declared before it is used. If not, an “undeclared variable” error message is issued.

 An identifier cannot be declared two times in the same scope. In such a case, a “multiply declared identifier”
message should be issued. However, note that it is allowed to have two members with the same name in
two different classes, as they are not defined in the same scope.

 The variables declared inside the functions or classes (data members) are considered local and thus can
only be used in the current function or class scope. Data members can be used in all member functions of
their respective class. This raises the need for a nested symbol table structure:

1. A symbol table contains an entry for all identifiers (variables, functions, classes) defined in its own

scope. There are scopes for each class definition, free or member function definition, and a global
scope for the whole program.

2. The global symbol table, representing all the symbols defined in the global scope, exists until the end
of the compilation process.

3. All local symbol tables are representing sub-scopes and should be bound to their respective elements
in the current symbol table.

4. A local symbol table is created at the beginning of the compilation of any function, and can cease to
exist when the compilation process is over for this function.

5. A local symbol table is created at the beginning of the compilation of any class, and is only deleted at
the end of the compilation process.

Therefore, you have to associate with each variable and function identifier a record that contains its properties in
the appropriate symbol table. You have to keep in mind that you might have to change the structure of these records
later in the design of the compiler. Make sure you can change the record structure with minimal changes to your
symbol table manipulating functions.

Functions to manipulate symbol tables

create(Tn) Creates a new, empty table
search(Tn,i,ptr,found) Searches the table Tn for a given identifier i, and recursively upwards in

the symbol table nest if not found locally. If the identifier is found,
parameter found is true and ptr gives the pointer to the record associated

with that identifier. Otherwise found is false.

insert(Tn,i,ptr) Inserts identifier i in table Tn, and ptr points to the newly inserted

record
delete(Tn) Deletes the symbol table Tn

print(Tn) Prints all identifiers in Tn and their properties. This procedure is needed

only for debugging purposes

Properties stored in the symbol table

 whether the identifier has been properly declared.

 its type (integer, floating point number, function, class).

 if it is a function, then the number of parameters and the type of each parameter (probably implemented as
a linked list) is stored, along with a pointer to a symbol table structure describing the symbols local to this
function.

 if it is a class, the record is actually a pointer to a local symbol table structure describing the symbols local
to this class. Note that each member function entry in this local table will also point to their respective local
tables.

 if it is a variable then store the kind of variable (normal variable, or parameter).

 structure (simple, array, class).

 if the variable is an array then store its dimension

 the address of the corresponding element in memory (to be used for code generation)

Work to be done

 Implement the data structures and functions for the symbol tables.

 Add into your parser, in appropriate places, calls for symbol table handling so that:

 A new table is created at the beginning of the program for the global scope.

 A new entry is created in the global table for each class definition. These entries should be links to local
tables for these classes.

 An entry in the appropriate table is created for each variable defined.

 An entry in the appropriate table is created for each function definition. These entries should be links
to local tables for these functions.

 The content of the table for a function is printed at the end of each function declaration (for testing and
grading purposes).

 Provide with your program a documentation that describes the overall organization of the symbol tables,
the data structure used to implement the tables, and the locations in your grammar of the function calls to
create and destroy tables, and the function calls to create entries in the tables.

Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 3”. The file submitted must be a .zip file
containing:

• all your code
• a set of input files to be used for testing purpose, as well as a printout of the resulting output of the program for

each input file (symbol table output and error reporting, as described above)
• a simple document containing the information requested above

You are also responsible to give proper compilation and execution instructions to the marker in a README file. If
the marker cannot compile and execute your programs, you might have to have a meeting for a demonstration.

Evaluation criteria and grading scheme

Documentation:
 Description of the design of the symbol table structure and functioning 5 pts
 Grammar augmented with the placing of the symbol table actions 5 pts
Program:
 Correct implementation according to assignment statement 15 pts
 Accurate output of error messages 5 pts
 Output of symbol tables 5 pts
 Completeness of test cases 15 pts
Total 50 pts

