
Using MFC (Microsoft Foundation Classes)

COMP 345

By: Rishinder Paul

Menu, Mouse Events & Serialization

 Working with Menu
◦ Editing the menu

◦ Event-Handling

 Mouse Events
◦ Default Right-Click

◦ List of mouse events

◦ Creating a new event

◦ Understanding Mouse
Coordinates

◦ Some tips!

 Serialization
• Setup.

• Implementation.

• Storing/Retrieving
objects from files.

 Menu helps in grouping various
functionalities of our application.

 There are some menu items
provided in MFC by default.

 Our Goal is to create our own
menu item and program it to do
something, like displaying a
Message box.

 For this tutorial, we will be using
the simpleShapes Project as an
example.

 Open the Resource View (Ctrl+Shift+E).

 Expand the resource view tree.

 Expand the “Menu” Folder.

 Double click the Menu Item with name:
◦ IDR_yourFileNameTYPE

◦ IDR_simpleShapesTYPE in this case

 You will see the window with opened “File”
menu.

 To add a new menu item:
◦ Click on the “Type Here” box.

◦ Type the menu name, for example “Game”.
◦ Hit enter.

 To add a submenu:
◦ Click on the Newly created Menu Item.
◦ The same “Type Here” box will appear.
◦ Click on that box.
◦ Type the submenu name, example “New Team”.
◦ Hit Enter

 To make this menu function, we have to add
an event-handler to it.

 For doing this, Right-Click the newly created
menu item, i.e. “New Team”.

 Click on “Add Event Handler”.

 It’s a good practice to have your events either
in the Document or the View class.

 Here to choose View class for handling
events, select the CsimpleShapesView form
the class list on the Right Panel.

 The function handler name will be:
◦ OnGameNewteam

 Let it be the same and click “Add and Edit”.

 After clicking on “Add and Edit”, the code
editor with the event-handler function will
open.

 We can place our code in this function, which
looks something like:

void CsimpleShapesView::OnGameNewteam()
{

MessageBox(_T(“New Team Creation!”));
}

 Exercise: Try to invoke
dialogs for team editor
and player editor from
the menu itself.

 In the following slides we’ll learn how to
respond to various mouse events like button-
up, button-down and drag.

 Here we’ll use manual coding over widgets
for handling mouse events.

 Apply these techniques for controlling your
game map and players.

 Try to run your MFC application and right-
click on the application window.

 You see a context-menu, this is a default
mouse event provided to you by MFC.

 You can edit this mouse event by exploring
“OnRButtonUp” function in your “view” file.

void CsimpleShapesView::OnRButtonUp(UINT /* nFlags */, CPoint point)

{

ClientToScreen(&point);

OnContextMenu(this, point);

}

 Try to place your own code in place of the
highlighted code.

 You’ll see that once you run your application
and perform a right-click in the window, your
code will get executed.

 To create a new handler for mouse-events,
we need to understand what all events we can
trigger from our mouse.

 These are the most commonly used mouse
events:
◦ Left-Button Up

◦ Left-Button Down

◦ Right-Button Up

◦ Right-Button Down

◦ On Mouse Move

 For now, let’s us understand how to handle
the Left-Button Up event.

 To handle our left-button up event, we need
to create a handler for it first.

 For this follow these steps:
◦ In the View file, go to the Message Map block.

◦ Here we can see a handler for the right button-up.

 Add the following statement for our event,
within the Message Map:
◦ ON_WM_LBUTTONUP()

 Now we have to add a function declaration for
this event in our View class header file
(simpleShapesView.h)

 In the protected scope Add the following
statement as a declaration:

 afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

 Now define this function in the View
implementation file (simpleShapesView.cpp)

 Let’s invoke a message bock for now. To do
this use the following code:

void CsimpleShapesView::OnLButtonUp(UINT /* nFlags */, CPoint point)

{

MessageBox(_T("You clicked the Left button."));

}

 Now we are done with a basic left-button up
event.

 In the handler function of our mouse, we can
see an argument “point” of type CPoint.

 Why do we need this?
◦ To know the exact location of our mouse at the

time of this event.

 How can we use it?
◦ In your game map, each object (grid and player) has

it’s own coordinates/location.
◦ To control them from mouse events, we can

perform some kind of calculations based on this
“point” argument to figure out if a particular object
has been clicked or not.

Clicked
Grid

 To see if the mouse has clicked on the grid,
some simple math can be used.

 As we know that we can get the mouse
coordinates from our mouse handler.

 If the Top-Left corner of the grid has
coordinates (X1,Y1) and the edge-length is E.

 Lets say the our mouse has coordinates (X2,Y2).

 Condition to check if the mouse has clicked within the grid:
◦ If(x1<x2 && x1>(x2-E))

Clicked!

 “Serialization is the process of converting our
objects into sequence of bits, so that they can be
stored in a file or memory buffer”. Wikipedia

 Although we can store the information in files as
text by using fstream or in Databases but this
makes it more difficult to extract information
directly in the form of objects.

 We need some mechanism that can store the
current state of objects and not the individual
members of our object.

 Serialization can be done in MFC applications
with ease.

 For this we need to follow these steps:
◦ Make our Class inherit from the CObject class.

◦ Add the DECLARE_SERIAL() macro to the class
definition.

◦ Declare Serialize() as a member function of your
class.

◦ Add the IMPLEMENT_SERIAL() macro to the class
implementation file.

◦ Implement the Serialize() function in your program.

 Lets consider an example of our “Team” class,
which contains the members for storing the
number of wins, loses, draws, etc.

 To serialize it, inherit it from CObject:
◦ Class Team: public CObject

{

….
….

}

 Within the class definition, add the following
statement to the protected scope:
◦ DECLARE_SERIAL(Team);

 Declare the function Serialize() in this class as
follows:
◦ void Serialize(CArchive&);

 Now we have the basic setup for serialization.

◦ Class Team: public CObject

{

….
protected:

….

DECLARE_SERIAL(Team);

public:

….

void Serialize(CArchive&);

}

 In the class implementation file, we have to
declare the macro IMPLEMENT_SERIAL()

 This should be declared immideately after the
includes i.e. it should look like this:

#include "Team.h”

IMPLEMENT_SERIAL(Team,CObject,1);

….

….

 Now we have to define the Serialize() function
that we declared in the class definition.

 This function will specify, which members of
the class do we need to serialize and store.

 We can include all or some of the class
members that we need to store.

 The function should look like:
◦ void Team::Serialize(CArchive& archive)

◦ { //Your code goes here }

void Team::Serialize(CArchive& archive)

{
CObject::Serialize(archive);

if(archive.IsStoring())

archive <<wins<<looses<<draws<<family<<totalPlayers;

else

archive >>wins>>looses>>draws>>family>>totalPlayers;

}

 archive.IsStoring() is used to know weather
we want to store or retrieve the object.

 archive<<
◦ This serializes the members for storing

 archive>>
◦ This de-serializes the members for retrieving

 In our program, we can invoke this function
whenever we need this.

 Example invocation statement:
◦ teamA.Serialize(); //If teamA is not a pointer.

◦ teamA->Serialize(); //If teamA is a pointer.

 The following syntax is an example for
storing the teamA object in mySerial1.bbf file

CFile theFile;

theFile.Open(_T("mySerial1.bbf"), CFile::modeWrite);

CArchive archive(&theFile, CArchive::store);

teamA->Serialize(archive);

 The following syntax is an example for
retrieving the teamA object from
mySerial1.bbf file

CFile theFile;

theFile.Open(_T("mySerial1.bbf"), CFile::modeRead);

CArchive archive(&theFile, CArchive::load);

teamA->Serialize(archive);

teamA->displayDetails();

 To know more about MFC, go through the
MSDN tutorials at:
http://msdn.microsoft.com/en-
ca/visualc/bb496952.aspx

 Try to use the right programming approach.
If this is right, you will find it helpful in
designing your User Interface.

 You can always ask your questions by mail
at: rishinder2007@yahoo.com

http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx
http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx
http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx
mailto:rishinder2007@yahoo.com

