
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2018

Assignment 3, Semantic Analysis

Deadline: Monday March 19th, 2018
Evaluation: 10% of final grade
Late submission: penalty of 50% for each late working day

In this assignment, you are to implement a semantic analysis phase for the language described in assignment 2.
The implementation of the semantic analysis phase implies two inter-related sub-phases: (1) implementation of
semantic actions for the generation of symbol tables and (2) implementation of semantic checking and type-
checking semantic actions. The following is a discussion of various aspects of the semantics of the language, and
the tasks required for their implementation:

• The purpose of the symbol table is to help resolve the typing and cross-referencing of the identifiers used
in the program, taking into consideration the typing and scoping of the identifiers as expressed in the
analyzed program.

• A program includes a set of free functions, minimally including one and only one main function (the
program function). Information about the free functions must be available in the symbol table before

function calls can be semantically checked. In order allow functions to be called before they are defined,
you need to implement at least two passes: a first pass that constructs the symbol tables, and a second
pass that uses the information generated in the first pass.

• Classes represent the encapsulation of a user-defined data type and its member functions. They are all
defined before the free functions. As with free functions, two passes (as described above) have to be used
to allow a class to refer to another class that is declared after it. In any case, circular class dependencies
should be reported as a semantic error.

• If a class has an inheritance list, the symbol table of its directly inherited class(es) should be linked in this
class, so that inherited members are effectively considered as members of the class, even though they are
part of a separate scope. Inherited members with the same name and kind (i.e. variable or function) as a
class member should be shadowed by the class member.

• It is allowed to have two members with the same name in two different classes or functions, as they are not
defined in the same scope.

• There is no point in checking for indexes out of bounds, as indexes can be expressions, whose value cannot
be determined at compile time.

• The variables declared inside the functions (local variables) or classes (data members) are considered local
and thus can only be used in the current function or class scope. Data members can be used in all member
functions of their respective class. This raises the need for a nested symbol table structure:

• A symbol table contains an entry for all identifiers (variables, functions, classes) defined in its own
scope. There are scopes for each class definition, free or member function definition, and a global
scope for the whole program.

• The global symbol table, representing all the symbols defined in the global scope, exists until the end
of the compilation process.

• All local symbol tables are representing sub-scopes and should be bound to their respective elements
in the current symbol table.

• A local symbol table is created at the beginning of the compilation of any function or class

Therefore, you have to associate with each variable and function identifier a symbol table record that
contains its properties, and include it in the symbol table representing the scope in which this identifier is
declared. You have to keep in mind that you might have to change the structure of these records later in
the design of code generation phase of the compiler. Make sure you can change the record structure with
minimal changes to your symbol table manipulating functions.

• When using operators in expressions, type inference and attribute migration must be done to determine the
type of sub-expressions. For simplicity of code generation later, it is suggested that it should be semantically
invalid to have operands of arithmetic operators to be of different types. For the same reason, both operands
of an assignment must be of the same type.

Implementation Requirements

1. Symbol table creation phase
1.1 Implement the data structures and functions for the symbol tables so that they can support the type checking

semantic actions.
1.2 Using syntax-directed translation, implement AST tree traversal that triggers semantic actions so that:
1.2.1 A new table is created at the beginning of the program for the global scope.
1.2.2 A new entry is created in the global table for each class declared in the program. These entries should contain

links to local tables for these classes.
1.2.3 An entry in the appropriate table is created for each variable defined in the program, i.e. class data members

or function’s local variables.
1.2.4 An entry in the appropriate table is created for each function definition (free functions and member functions).

These entries should be links to local tables for these functions.
1.2.5 During symbol table creation, there are some semantic errors that are detected and reported, such as multiply

declared identifiers in the same scope, as well warnings for shadowed inherited members.
1.2.6 The content of the symbol tables should be output into a file in order to demonstrate their

correctness/completeness.
1.2.7 In functions, (including member functions in classes) variables should be defined before being used in the

statements. If not, an “undeclared variable” error message is issued.
1.2.8 An identifier cannot be declared twice in the same scope. In such a case, a “multiply declared identifier”

message is issued.

2. Semantic/type checking phase
2.1 Using syntax-directed translation, implement AST tree traversal that triggers semantic actions so that the

following semantic checks are done, which should result in error reporting if the check fails:
2.1.1 Type checking is applied on expressions, as well as on assignment and return statements.
2.1.2 Any id referred to is defined in the scope where it is used (failure results in the following error messages:

undefined local variable, undefined free function, undefined member, undefined class)
2.1.3 Function calls are made with the right number and type of parameters. The types of expressions passed as

parameters in a function call must be of the same type as declared in the function declaration.
2.1.4 Referring to an array variable should be made using the same number of dimensions as declared in the

variable declaration. Expressions used as an index must be of integer type.
2.1.5 Circular class dependencies (through data members or inheritance) should be reported as a semantic error.
2.1.6 The “.” operator should be used only on variables of a class type. If so, its right operand must be a member

of that class. If not, a “undefined member” should be issued.
2.1.7 The type of the operand of a return statement must be the same as declared in its function’s return type, as

declared in the function’s declaration.

3. Error reporting
3.1 All semantic errors/warnings present in the entire program should be reported properly, mentioning the

location in the program source file where the error was located.
3.2 Only existing errors should be reported.
3.3 Errors should be reported in synchronized order, even if different phases are implemented and errors are

found in different phases.

Symbol table example

Symbol table: Global

name kind type

f1 function float : int[2][2], float

link

f2 function int : nil

MyClass1 class

MyClass2 class

program function

Symbol table: f1

name kind type

fp1 parameter int[2][2]

link

fp2 parameter float

fv1 variable MyClass1[3]

fv2 variable int

Symbol table: f2

name kind type link

Symbol table: MyClass1

name kind type

mc1v1 variable int[2][4]

link

mc1v2 variable float

mc1v3 variable MyClass2[3]

mc1f1 function int : int, MyClass2[3]

f2 function int : MyClass1[3]

Symbol table: MyClass2

name kind type

mc1v1 variable int[2][4]

link

fp1 variable float

m2 variable MyClass2[3]

Symbol table: program

name kind type

m1 variable int

link

m2 variable float[3][2]

Symbol table: MyClass1:mc1f1

name kind type

p1 parameter int

link

p2 parameter MyClass2[3]

fv1 variable MyClass2[3]

Symbol table: MyClass1:f2

name kind type

f2p1 parameter MyClass1[3]

link

m3 variable MyClass2[2]

mc1v1 variable int

class MyClass1 {
 int mc1v1[2][4];
 float mc1v2;
 MyClass2 mc1v3[3];
 int mc1f1(int p1, MyClass2 p2[3]) {
 MyClass2 fv1[3];
 …
 }
 int f2(MyClass1 f2p1[3]) {
 int mc1v1;
 …
 }
}
class MyClass2 {
 int mc1v1[2][4];
 float fp1;
 MyClass2 m2[3];
 …
}
program {
 int m1;
 float[3][2] m2;
 MyClass2[2] m3;
 ...
}
float f1(int fp1[2][2], float fp2) {
 MyClass1[3] fv1;
 int fv2;
 …
}
int f2() {
...
}

Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 3”. The file submitted must be a .zip file
containing:

• all your code
• a set of input files to be used for testing purpose, as well as a printout of the resulting output of the program for

each input file (symbol table output and error reporting, as described above)
• a simple document containing the information requested above

You are also responsible to give proper compilation and execution instructions to the marker in a README file. If
the marker cannot compile and execute your programs, you might have to have a meeting with the marker for a
demonstration.

Evaluation criteria and grading scheme

Analysis:

Description of the semantic rules used in the implementation ind 2.1 1 pts
Description of the purpose of each phase involved in the implemented semantic
analysis. For each phase, mapping of semantic actions to AST nodes, along with a
description of the effect/role of each semantic action.

ind 2.2 4 pts

Design/implementation:

Description/rationale of the overall structure of the solution and the roles of the
individual components used in the applied solution.

ind 4.3 3 pts

Correct implementation according to the above-stated requirements. ind 4.4 15 pts
Output of clear error messages (error description and location). ind 4.4 3 pts
Output of symbol tables in separate file. ind 4.4 3 pts
Completeness of test cases. ind 4.4 15 pts

Use of tools:

Description/justification of tools/libraries/techniques used in the
analysis/implementation.

ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the
analysis/implementation.

ind 5.1 3 pts

Total 50 pts

