
Concordia University
Department of Computer Science

and Software Engineering

Advanced Programming Practices
SOEN 6441 --- Fall 2011

Project Build 3 Grading

1. Incremental Code Build Description

You must deliver an operational version demonstrating some capacity of your system. This is
about demonstrating that the code build is effectively aimed at solving a specific project problem
or completely implementing specific system features. The goal of the build must be presented
first, then demonstration is made to show that the goal has been met, and also to explain some
parts of your code. The code build must not be just a "portion of the final project", but rather be
something useful with a purpose on its own.

2. Team Identification

TEAM # :

2. Evaluator Identification

Date Evaluator Signature

3. Grading

Presentation 5

Explanation of the architectural design of the entire project 1

Knowledge of code base/clarity of explanations 2

Effectiveness and demonstrated preparation of the presentation 2

Character generation/edition 7
Creating/editing a fighter character following the d20 game rules as described
below: level, ability scores and ability modifiers, hit points, base attack modifier and
number of attacks per round proportional to level, armor class adjusted to worn
armor and shield. The character view must show: abilities’ scores and modifiers, hit
points, base attack modifiers (including number of attacks per round), attack
modifiers for melee and ranged weapons and armor class.

3

Inventory pane, including worn items: armor, shield, gloves, bracers, rings, helmet,
boots, belt, and a backpack for items that are owned but not equipped. Ability to
equip/unequip items. All items should have their effect triggered/removed when
equipped/unequipped, including magical effects (see below).

3

Save/load a character to/from a file 1

Map generation/edition 3

Create a map of a user-defined size 1

Place game elements on a map (entry point, exit point, doors, chests, monsters, …) 1

Save/load a map to/from a file 1

Play 17
Start the game by selecting a map and character from a list of saved ones and
having the player character placed on the starting point, the monsters' levels and
treasure to be found are adjusted to the level of the player character.

2

User can use the character view during play (see character edition above). The
same view must be available for any monster on the map. Player character can
equip/unequip items during play.

2

The game follows the game sequence as described below, including turn-based
sequence, initiative roll, moving and attack sequence following the d20 rules. 3

End the game by having the character stepping on the exit point, the exit point
being activated only when all monsters on the map have been defeated. 1

Player character automatically goes up a level and is saved upon exiting the map. 1

Chests contain items whose power is proportional to the level of the character. 2

Chest can be opened and its content be put in the character’s backpack. 1
As part of their action for a round, monsters are moving randomly until they are hit
by the character. After they are hit, they will follow the character and hit him. 2

Logging window clearly showing that the d20 rules are used during game play,
including dice rolls, and clearly showing all applicable modifiers used in the
calculations.

3

Use of tools/techniques 18

Software versioning repository (history, build 1, 2 and 3baselines) 3

Inline documentation (each class and method, available on team's web space) 3

Unit testing framework (at least 40 relevant test cases, single test suite) 3

Coding standards (meaningful variable names, appropriate use of comments) 3
Use of design patterns (Character, Map, and Chest builders, Item Factory, as
described below) 6

Total 50

Implement a Builder pattern for the Character class to create characters (player character or enemy
character) of various levels (fighter class only), and enabling various types of fighter style to be chosen
(see table below).

Ability scores generation method: Any character (and even monsters) has the same 6 ability scores
(Strength, Intelligence, Dexterity, Constitution, Wisdom, Charisma). Upon creation of the character, the
values associated with each ability score is randomly determined. For the generation of ability scores, for
each ability score, roll 4d6 and selects the 3 highest dice values. After all 6 scores have been generated,
they are assigned to an ability depending on the type of fighter that this character is: (1) a “bully” uses
brute strength to destroy his enemies, (2) a “nimble” favors dexterity and better armor class to evade
blows, (3) a “tank” favors survival by more hit points through a high constitution score. Create one
Concrete Builder for each of these three types of fighter.

Type of fighter Ability scores in decreasing order of importance
Bully Strength, Constitution, Dexterity, Intelligence, Charisma, Wisdom
Nimble Dexterity, Constitution, Strength, Intelligence, Charisma, Wisdom
Tank Constitution, Dexterity, Strength, Intelligence, Charisma, Wisdom

Level-dependent characteristics: As a character goes up levels, the following are increasing: (1) his hit
points go up by (1d10+constitution modifier), (2) his base attack bonus goes up by one, and his number of
attacks per round increase by one every five levels, according to the following table:

level base att bonus level base att bonus level base att bonus level base att bonus
1 +1 6 +6/+1 11 +11/+6/+1 16 +16/+11/+6/+1
2 +2 7 +7/+2 12 +12/+7/+2 17 +17/+12/+7/+2
3 +3 8 +8/+3 13 +13/+8/+3 18 +18/+13/+8/+3
4 +4 9 +9/+4 14 +14/+9/+4 19 +19/+14/+9/+4
5 +5

10 +10/+5

15 +15/+10/+5

20 +20/+15/+10/+5

The ability modifiers are calculated from the baseline of a value of 0 for an ability value of [10-11] and
decrease by 1 for each ability value of 2 less (i.e. [8-9] is -1, [6-7] is -2, ... , [0-1] is -5). As the minimum
ability score is 0, the minimum ability modifier is -5. Similarly, the ability modifier increases by 1 for each
ability value of 2 more (i.e. [12-13] is +1, [14-15] is +2, [16-17] is +3, etc). As there is no upper limit to the
ability scores values, there is no upper limit to the ability modifiers.

The armor class is calculated according to the dexterity modifier and the armor and shield worn by the
character: AC = 10 + (dex mod + armor mod + shield mod). The armor modifier depends on the type of
armor the character is wearing and ranges from +1 to +8 (see below).

armod mod armor armod mod armor armod mod armor
1 padded 4 chain shirt 7 half plate
2 leather 5 breast plate 8 full plate
3 studded leather

6 banded mail

The shield modifier applies if you are wearing a shield and is +1, +2 or +4 depending on the type of shield
(see below).

shield mod shield

1 buckler
2 heavy shield
4 tower shield

The attack bonus is calculated according to the base attack bonus (see above) and the ability modifier (for
melee weapons, use the strength ability modifier; for ranged weapons, use the dexterity ability modifier).
The attack bonus is used in the combat sequence to determine if a successful hit is happening.

weapon type attack bonus
melee (e.g longsword) base attack bonus + strength modifier
ranged (e.g. longbow) base attack bonus + strength modifier

The game sequence is turn-based. Every turn, each participant (player or monster) gets to do an action.
At the beginning of every turn, an initiative roll is made by each participant (1d20 + dexterity modifier). The
values of each roll determines the order into which each participant will get his turn. Each participant is
doing their allowed action each turn, which may involve movement (i.e. moving a maximum of 6 squares)
and/or attacking. When an attack is declared on a target, 1d20 is rolled and added with the attack bonus of
the attacker. If the result is greater or equal than the armor class of the defender, the attack results in a hit
and hit points are deducted from the defender. Both a longsword and longbow will inflict 1d8 hit points of
damage. Melee weapons' damage are adjusted with the strength modifier. Ranged weapons' damage
inflict only their nominal damage and is not affected by strength nor dexterity. During an attack, the
attacker is allowed a number of attacks proportional to its level, as shown on the table above. Melee
attacks are allowed only when the attacker and defender are on adjacent cells. Ranged attacks are
allowed from non-adjacent cells.

weapon type damage damage bonus
longsword (melee) 1d8 strength modifier
longbow (ranged) 1d8 none

Once a player or monster has reached 0 or less hit points, he is declared dead. Once every participant
has done his own action in the turn, a new initiative roll is made and a new turn starts. In order to
demonstrate that your combat sequence is implemented properly using the d20 rules, you have to
implement a logging window into which the user can clearly follow step-by-step what is happening during
the game showing the calculations happening in order to determine successful hits and damage inflicted,
showing all dice rolls and all modifiers involved in the calculation.

Implement a Builder pattern for the Map class. Such a builder will take any map previously saved by the
Map Generator/Editor and adjust the level of the monsters on this map, as well as (eventually) the value of
the items found in the chests on this map.

The playing sequence to be demonstrated in this build is the following: (1) select a map and a player
character; (2) as the game starts, the map is to be adjusted automatically to the level of the character
entering the map, i.e. the monster on this map should be the same level as the player character, and the
treasure to be found is also proportional to the level of the character; (3) upon entering the map, the player
character is placed on the entry point; (4) the game follows the turn-based game sequence as described
above, including moves and attacks; (5) the player character defeats the monster following the d20 rules;
(6) the player character exits the map and automatically goes up a level and is saved automatically.

Implement a Chest Builder that creates a chest that contains various items depending on the level of the
character opening the chest. The Chest Builder must use an Item Factory that returns items whose
magical effect varies as described below, depending on the kind of item they are.

Chest and items: A chest contains magic items usable by a character. Upon opening the chest, the
character can select items in the chest and put them in his own inventory, and eventually equip them to
have their magical effect enhance his fighting capacities. Items can be of the following types: helmet,
armor, shield, bracers, ring, belt, boots, sword, bow. Only one item of each type can be worn at a time.
Each item has a +1 to +5 modifier that can affect the character in different ways as listed below.

Item May increase either
Helmet Intelligence, Wisdom, Armor class
Armor Armor class
Shield Armor class
Bracers Armor class, Strength
Ring Armor class, Strength, Constitution, Wisdom, Charisma
Belt Constitution, Strength
Boots Armor class, Dexterity
Sword, Bow Attack and damage

