

COMP 442/6421 Compiler Design

Tutorial 1

Instructor: TAs: Dr. Joey Paquet Hamed Jafarpour Vashisht Marhwal paquet@cse.concordia.ca hamed.jafarpour@concordia.ca vmarhwal97@gmail.com

Outline

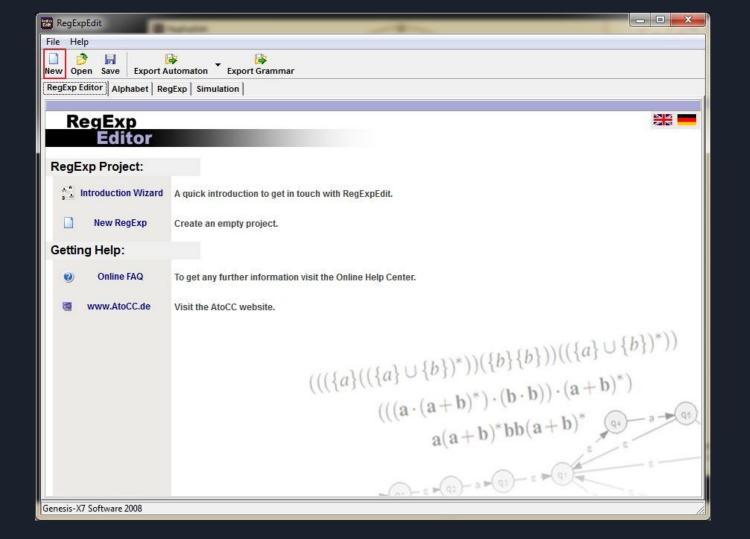
□ AtoCC

□ JFLAP

AtoCC

AtoCC is a learning environment helps the learner in theoretical computer science (automaton theory, formal languages) and its application in compiler design.

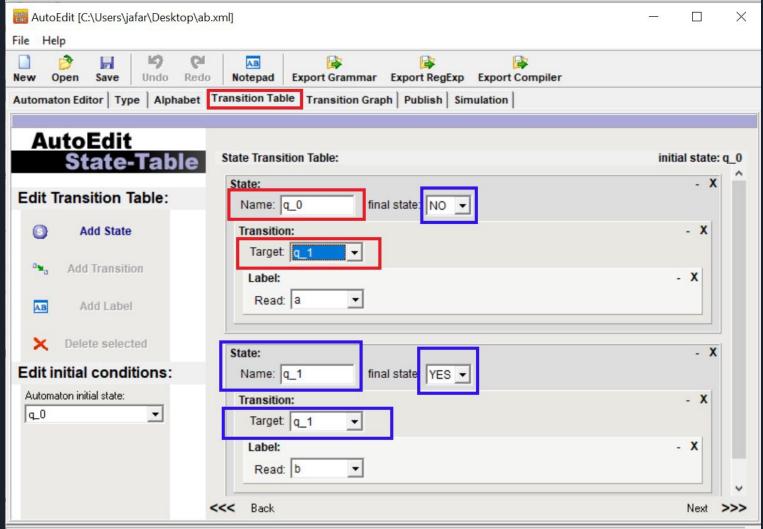
AtoCC consists of 7 components: AutoEdit, AutoEdit Workbook, RegExpEdit, kfG Edit, TDiag, VCC and SchemeEdit.


Further information on the architecture of AtoCC can be found in: http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=de&site=main

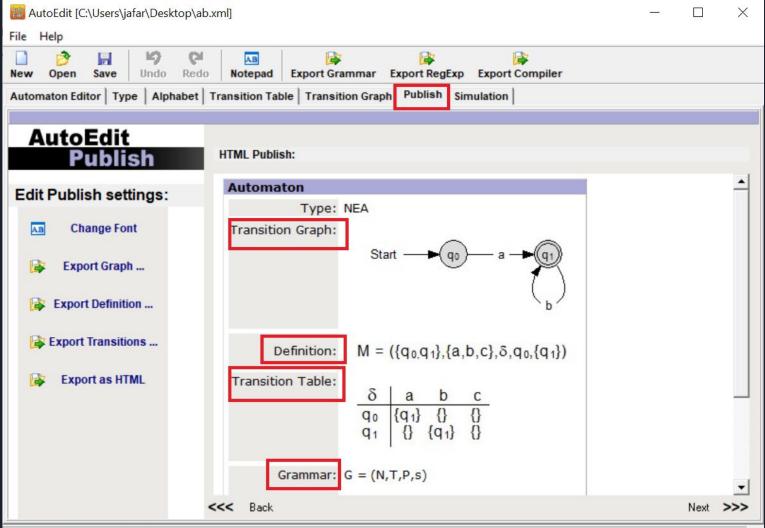
Note: Students will need to use it only for learning. The learning environments are not available whenever and wherever.

AtoCC --- RegExpEdit

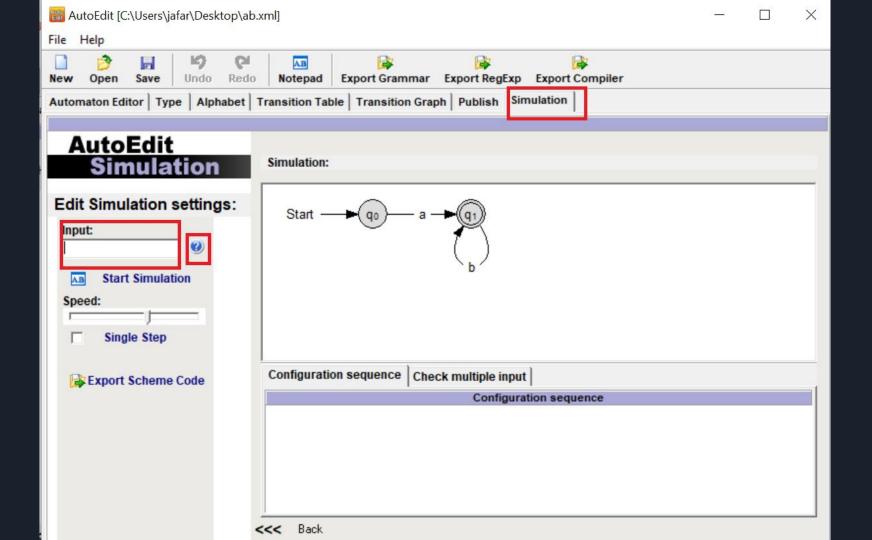
It is a powerful tool that we can use to generate DFA from regular expression and validate your work. In the following slides you will find screenshots on how to use this tool in order to create a DFA from a regular expression that should conform to the lexical specification of the language.

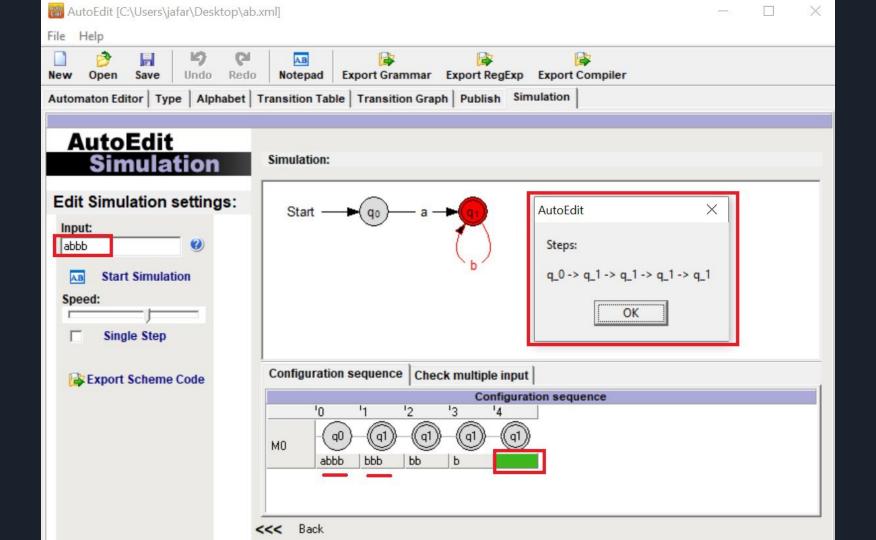

📷 RegExpEdit			×
File Help			
	aton Export Grammar		
RegExp Editor Alphabet RegExp	Simulation		
RegExp Alphabet Edit Alphabet: Add Alphabet Item	Alphabet Items:	n c	lear
Predefined Alphabet			
a, b, c			
x, y, z 0, 1 0, 1, 2, 3, 4 a, b, c, d X Y			
	<<< Back	Next 🕻	>>>

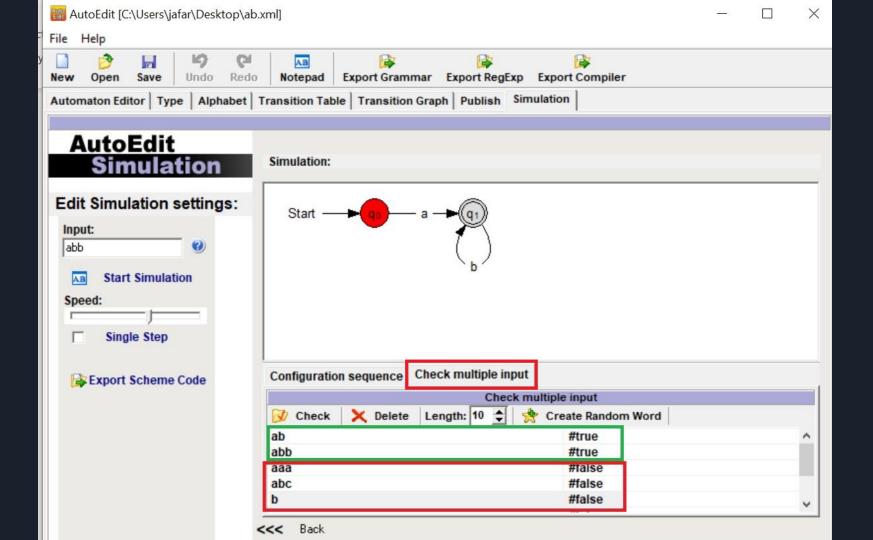
The RegExpEdit	 đ	\times
File Help		
New Open Save Export Automaton Export Grammar		
RegExp Editor Alphabet RegExp Simulation		
RegExp Editor		
RegExp		
Enter RegExp here NEA Graph Minimized NEA Graph		
ab* Use the formal notation for regular expressions. Like: (a+b)* for L = (w w contains ab) over (a,b). Minimized RegExp ab* Compare RegExp with another Compare Transform to NEA Generate NEA graph for your RegExp at the right. Show NEA		
Hint: For ε you must write EPSILON in your RegExp.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

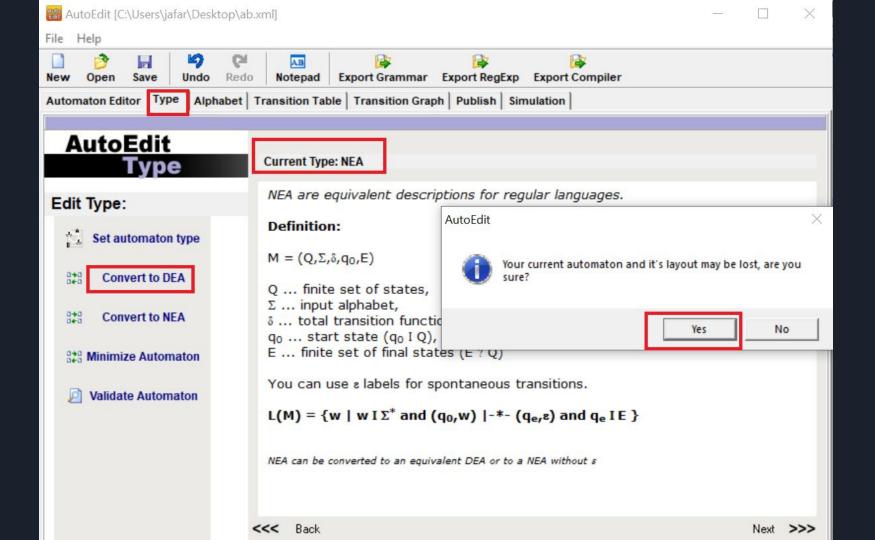

File Help W Open Sw Export Automaton opt formmar RegExp Editor Alphabet RegExp Simulation RegExp Editor Enter RegExp here ab ² Use the formal notation for regular expressions. Like: (ah)'ab(a+b)' for L = (w w contains ab) over (a,b). Minimized RegExp ab ² Compare RegExp with another Compare RegExp with another Generate NEA graph for your RegExp at the right. Show NEA ?	📷 RegExpEdit	1.000 A	đ	×
New Open Save Export Automaton Export Grammar RegExp Editor Alphabet RegExp Editor RegExp here RegExp ab* Use the formal notation for regular expressions. Like: (ab)/ab(ab)* for L = (w w contains ab) over (a,b). NEA Graph Minimized RegExp Start (a) Start (a) (b) Transform to NEA (c) (c)				
RegExp Enter RegExp here ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = (w w contains ab) over (a,b). Minimized RegExp ab* Compare RegExp with another Compare RegExp with another Compare RegExp with another				
Enter RegExp here ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = (w w contains ab) over (a,b). Minimized RegExp ab* Start Q ompare Transform to NEA	RegExp Editor Alphabet RegExp Simulation			
Enter RegExp here ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = (w w contains ab) over (a,b). Minimized RegExp ab* Start Q ompare Transform to NEA				
Enter RegExp here ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = (w w contains ab) over (a,b). Minimized RegExp ab* Start Q a b Start	RegExp			
Enter RegExp here ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = {w w contains ab} over (a,b). Minimized RegExp ab* Compare RegExp with another © compare Transform to NEA				
ab* Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = {w w contains ab} over {a,b}. Minimized RegExp ab* Compare RegExp with another © Compare Transform to NEA				
Use the formal notation for regular expressions. Like: (a+b)*ab(a+b)* for L = {w w contains ab} over {a,b}. Minimized RegExp ab* Compare RegExp with another Compare RegExp with another Transform to NEA	Enter RegExp here NEA Graph Minimized NEA Graph			
Like: (a+b)*ab(a+b)* for L = {w w contains ab} over {a,b}. Minimized RegExp ab* Compare RegExp with another Transform to NEA	ab*			
ab* Start Compare RegExp with another b Image: Compare Transform to NEA b				
Compare RegExp with another Compare Compare Compare Compare	Minimized RegExp			
Transform to NEA				
Transform to NEA				
Generate NEA graph for your RegExp at the right. Show NEA 😜				
	Generate NEA graph for your RegExp at the right. Show NEA 📀			
Hint: For ε you must write EPSILON in your RegExp.	Hint For e you must write EPSILON in your RegExp.			

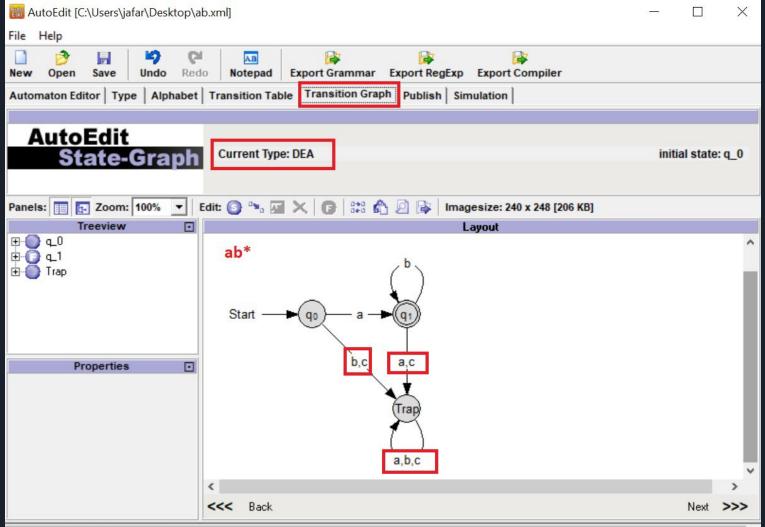
 $\boxed{ \epsilon u = u \epsilon = u } \boxed{ \epsilon^* = \epsilon } \boxed{ u + v = v + u } \boxed{ u + u = u } \boxed{ (u^*)^* = u^* } \boxed{ u(v+w) = uv + uw } \boxed{ (uv)^* u = u(vu)^* } \boxed{ (u+v)^* = (u^*+v^*)^* } \boxed{ (u^*+v)^* = (u^*+v^*)^* } \boxed{ (u^*+v)^* = (u^*+v^*)^* } \boxed{ (u^*+v)^* = (u^*+v^*)^* } \boxed{ (u^*+v^*)^* } \boxed$

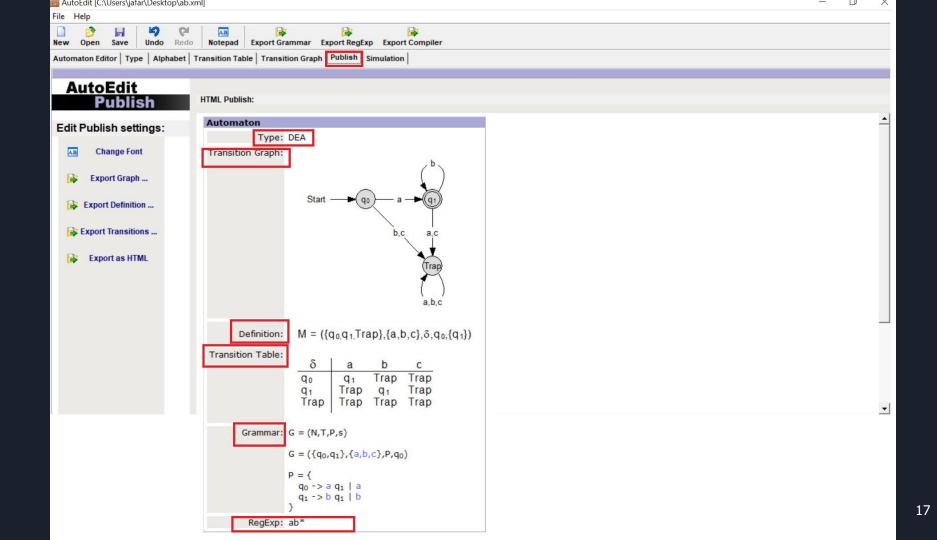

📷 RegExpEdit		- 0 X
File Help		
RegExp Editor Alphabet RegExp Simu	Image: AutoEdit [C:\Users\jafar\Desktop\ab.xml] - - × File Help	
Editor	Image: New Open Save Image: Save	
Enter RegExp here ab* Use the formal notation for regular expre Like: (a+b)*ab(a+b)* for L = {w w contain		
Minimized RegExp ab* Compare RegExp with another	Set automaton type Definition: $M = (Q, \Sigma, \delta, q_0, E)$ $M = (Q, \Sigma, \delta, q_0, E)$ Q finite set of states,	
Transform to NEA Generate NEA graph for your RegExp at ti	DefinitionConvert to NEA Σ input alphabet, δ total transition function, $Q \ge (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$, q_0 start state $(q_0 I Q)$, E finite set of final states (E ? Q)	
	You can use ϵ labels for spontaneous transitions. L(M) = {w w I Σ^* and (q ₀ ,w) -*- (q _e , ϵ) and q _e I E }	
Hint: For E you must write EPSILO!	NEA can be converted to an equivalent DEA or to a NEA without a	
	Genesis-X7 Software 2004 - 2008	

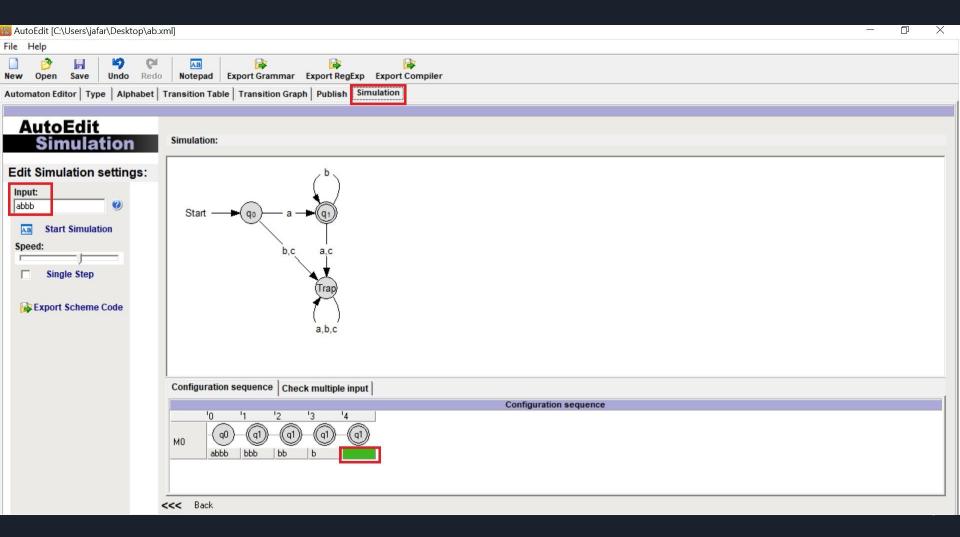



Genesis-X7 Software 2004 - 2008




Genesis-X7 Software 2004 - 2008





Genesis-X7 Software 2004 - 2008

JFLAP?

What Is JFLAP?

JFLAP is a package which can be used as an aid in learning the basic concepts of Formal Languages and Automata Theory. Some properties of the JFLAP:

- Regular languages create
- DFA
- □ NFA
- **u** regular grammar
- □ regular expression
- Regular languages conversions
- □ NFA -> DFA -> Minimal DFA
- □ NFA <-> regular expression
- □ NFA <-> regular grammar

Note: For more information about JFLAP visit the bellow link: http://www.iflap.org/

JFLAP

• <u>HOME</u>

What is JFLAP

• <u>JFLAP Tutorial</u> (partially updated for JFLAP 7.1)

JFLAP Videos

Instructor Use

Modules and Exercises

History of JFLAP

World Usage to June 2008

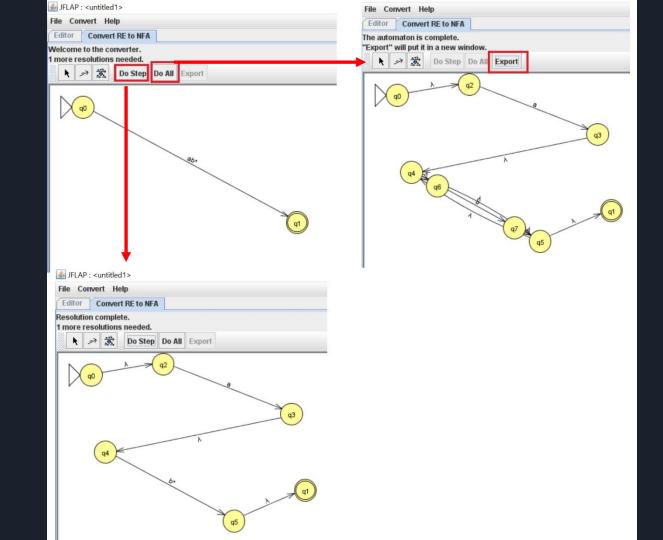
JFLAP book

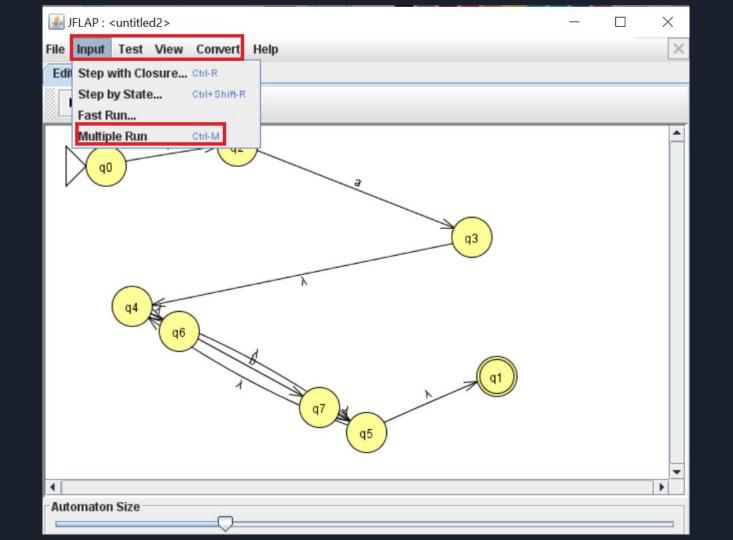
books including JFLAP

Software using JFLAP

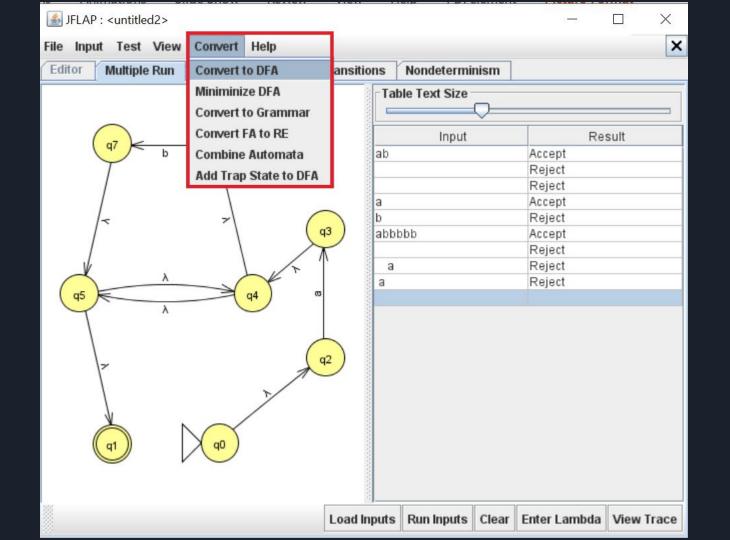
JFLAP papers

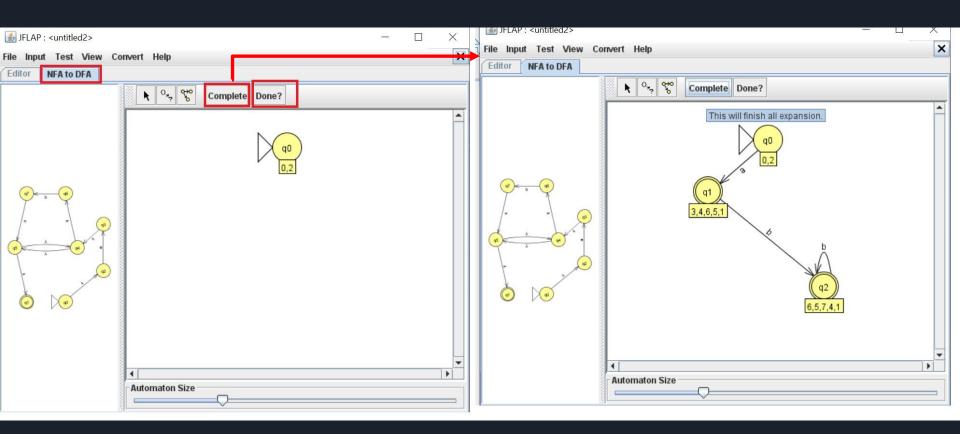
Get JFLAP


INFORMATION about JFLAP:


Get JFLAP Software

Please fill out this form and you can have the most recent version of JFLAP to use for free.


JFLAP7.1	
	🛃 JFLAP 7.1 ── 🗆 🗙
	File Help Batch Preferences
	Finite Automaton
	Mealy Machine
	Moore Machine
	Pushdown Automaton
	Turing Machine
	Multi-Tape Turing Machine
	Turing Machine With Building Blocks
	Grammar
	L-System
	Regular Expression
	Regular Pumping Lemma
	Context-Free Pumping Lemma


\$	JFLAP : <untitled1></untitled1>			1. 		\times
File	Convert Help					\times
Ed	Convert to NFA					
	be regular expression	n below:				
ab*						
ab*		n below: optimiztion, adjust the si	ze of this window after	resizing the te	xt field)	
ab*			ze of this window after	resizing the te	xt field)	
ab*			ze of this window after	resizing the te	xt field)	
ab*			ze of this window after	r resizing the te	xt field)	
ab*			ze of this window after	resizing the te	xt field)	
ab*			ze of this window after	r resizing the te	xt field)	

▲ JFLAP : <untitled2></untitled2>				30 1	\Box \times
File Input Test View Convert Help					×
					~
Editor Multiple Run					
	Tat	le Text Size			
			\bigtriangledown		
•	-	Innut		Ba	eult
d and a second se	ab			Accept	
				Reject	
				Reject	
N A A A	а			Accept	
	b			Reject	
	abbt	ddo		Accept	
				Reject	
(13)	а			Reject	
	а			Reject	
	8				
44 A					
(P)					
(47)					
45					
	and lunute	Dum Impute	Clear	Finter Lombido	Manu Trans
L	oad inputs	Run inputs	Clear	Enter Lambda	View Trace

Implementation of lexical analyzer

Two ways to implement the lexical analyzer:

- 1. Table driven (but constructing a transition table by hand is not an easy job)
- 2. Handwritten (it requires you to be very careful considering all the possible situations)

Notes:

- □ It is your choice to pick one of the methods to implement and your choice <u>will not</u> affect the prospective assignments.
- □ The output of the Scanner is the stream of tokens which can be accessed when the nextToken() method being called.
- □ You are not allowed to use any tool like Lex can generate a Scanner automatically.

Thanks!