
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design
COMP 442/6421 --- Winter 2022

Contact Information

name: Dr. Joey Paquet
office: ER-1149
phone: (514) 848-2424 ext. 7831
office hours: Wednesdays 10:00-12:00
e-mail:
www:

paquet@encs.concordia.ca
www.cse.concordia.ca/~paquet

Schedule
lectures LECT NN M------ 17:45-20:15 online Paquet, Joey paquet@encs.concordia.ca
laboratories LAB NN NI M------ 20:30-22:20
 LAB NN NJ M------ 15:45-17:35
 LAB NN NK M------ 20:30-22:20

Calendar Description
Prerequisites (COMP442): COMP228 or SOEN228 or COEN311; COMP335; COMP352 or COEN352;
(COMP6421) : COMP5201, COMP5361; COMP5511. Compiler organization and implementation: lexical analysis
and parsing, syntax-directed translation, code optimization. Run-time systems. A project.

Course outline
This course is oriented on the design and implementation of a compiler. Most lectures are directly related to the
project. Assignments sequentially cover all the implementation steps of the compiler. The final examination is
used to assess the students’ theoretical understanding of the material covered in class, which is a fundamental
component of this course.

Grading
The evaluation will be based on assignments (5X8%), final project demonstration (30%), and a final examination
(30%). Late assignments are assessed a penalty of 50% for each late working day. In all assignments, good
design of programs, documentation, and proper testing carry considerable weight. At the end of the course, each
student must operationally demonstrate the capabilities of the complete compiler. The final examination covers all
material covered in class. The grading scheme used is the same for all students, undergraduate or graduate. The
numeric-to-letter grading conversion is made according the class average.

Online Teaching
At the lectures and lab sessions will be pre-recorded and be made available online prior to the regular weekly
lecture/lab time. The regular weekly lecture/lab time will be reserved for a live zoom meeting presenting a quick
review of the weekly material and questions/answers about the material and the project. The instructor will
provide a 2-hour weekly zoom office hours for individual consultation outside of the lecture time. The final
examination will be held using a moodle quiz. All assignments/project demonstrations will be done on zoom using
the shared screen feature. Students will have remote access to the lab infrastructure, though they may use their
own computers and online resources to manage their project. In the event that the University decides to go back
to in-person mode, all of the above events happening on zoom may proceed in-person.

Textbooks
Main Reference
C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley, 2009.
Other Relevant Sources
A.V. Aho, R. Sethi and J.D. Ullman. Compilers, Principles, Techniques, and Tools, Addison-Wesley, 1986.

Communication
All announcements to the students will be made through moodle. Thus it is very important for all students to setup
their moodle account so that it sends an email when a moodle message is received, and to regularly check for
emails coming into the mailbox of email address used on moodle. All course material, as well as the weekly
schedules and due dates, will be provided on the course web site (see the address above). A moodle page will
also be maintained.

Project Details
The project is about the design and implementation of a compiler for a simple programming language. The project
is divided into five assignments. Each assignment corresponds to the design and implementation of a major
component of the compiler, and makes use of the code base of all previous assignments. Thus, the project
involves a very substantial amount of incremental coding. You can write the compiler in any language you are
proficient with. You are not allowed to use compiler-generation tools. You are allowed to use any computer that is
available to you for the implementation. The project is due on the last week of classes, where final project
demonstrations are to be done individually with the instructor. No extensions of this deadline is possible.
Students are encouraged to discuss the design and implementation issues of the project among them. However,
each student must work on his/her individual implementation of the project. Note that you are responsible for the
design of a complete set of tests for each part of the project. You are encouraged to cooperate with other
students on this matter. Testing will be a major grading element of the assignments and the project.

Graduate Attributes
As part of either the Computer Science or Software Engineering program curriculum, the content of this course
includes material and exercises related to the teaching and evaluation of graduate attributes. Graduate attributes
are skills that have been identified by the Canadian Engineering Accreditation Board (CEAB) and the Canadian
Information Processing Society (CIPS) as being central to the formation of Engineers, computer scientists and
information technology professionals. As such, the accreditation criteria for the Software Engineering and
Computer Science programs dictate that graduate attributes are taught and evaluated as part of the courses. The
following is a description of the list of graduate attributes covered in this course, along with a description of how
these attributes will be incorporated in the course.

Knowledge base: Compilation process. Parsing techniques such as CLR, SLR, LALR, recursive descent and
table-driven predictive parsing. Syntax-directed translation, intermediate translation languages, symbol tables.
Grammars, attribute grammars, attribute migration, grammar transformation. Run-time systems.
Problem analysis: Determine appropriate parsing and compilation techniques to be applied for different
language constructs. Grammar analysis and transformation.
Design: Design and implement a full compiler including lexical analysis, parsing, semantic analysis, code
generation, and run-time system.
Use of tools: Use of an appropriate tools, programming language and libraries for the development of a full
implementation of a compiler. Use of analysis tools to transform/validate lexical and grammatical specifications.
Communication skills: Deliver the final project in an oral presentation.

Learning Outcomes
Demonstrate knowledge of the theory involved in compilers and its practical implementation. [ind. 1.3]
Identify, formulate, and develop theoretical models of different parts of a compiler. [ind. 2.1, 2.2]
Develop a compiler design adapted to the language as specified. [ind. 4.3]
Implement and test a compiler. [ind. 4.4]
Demonstrate operational use of appropriate tools, language, and libraries to implement a compiler. [ind. 5.1, 5.2]
Deliver an operational product demonstrated to respect specifications and design constraints. [ind. 7.4]

