
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Generating an Abstract Syntax Tree
using Syntax-Directed Translation

Joey Paquet, 2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• An abstract syntax tree (AST) is a tree representation of the abstract syntactic
structure of source code.

• Each node of the tree denotes a construct occurring in the source code.

• The syntax is "abstract" in not representing every detail appearing in the real
syntax.

• For instance, grouping parentheses have been removed, and a syntactic
construct like an if-then-else may be denoted by means of a single node
with three branches.

• This distinguishes abstract syntax trees from concrete syntax trees, traditionally
designated parse trees.

• Once built, additional information is added to the AST by means of subsequent
processing steps such as semantic analysis and code generation.

Abstract Syntax Tree: Definition

Joey Paquet, 2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Goal: to aggregate information
gathered during the parse in
order to get a broader
understanding of the meaning
of whole syntactic constructs

• At the leaves of the tree is fine –
grained information.

• As the information is migrated
up in the tree, information is
aggregated.

Abstract Syntax Tree: Goal

Joey Paquet, 2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The AST structure is constructed bottom-up:

• A list of siblings is generated.

• The list later is adopted by a parent.

• The AST structure should allow for adding of siblings at either end of the list.

• Some AST nodes require a fixed number of children

• Arithmetic operators

• if-then-else statement

• Some AST nodes require zero or more number of children

• Parameter lists

• Statements in a statement block

• In order to be generally applicable, AST nodes should allow for any number of
children.

Abstract Syntax Tree: data structure requirements

Joey Paquet, 2018

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• According to depth-first-search tree traversal.

• Each node needs connection to:

• Parent: to migrate information upwards in the tree

• Link to parent

• Siblings: to iterate through (1) a list of operands or (2) members of a group,
e,g, members of a class, or statements.

• Link to right sibling (thus creating a single linked list of siblings)

• Link to leftmost sibling (in case one needs to traverse the list as a sibling is being
processed).

• Children: to generate/traverse the tree

• Link to leftmost child (who represents the head of a linked list of children).

Abstract Syntax Tree: data structure design

Joey Paquet, 2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree: data structure design

Joey Paquet, 2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• makeNode(t)

factory method that creates/returns a node whose members are adapted to the
type of the parameter t. For example:

• makeNode(intNum i): instantiates a node that represents a numeric literal
value. Offers a get method to get the value it represents.

• makeNode(id n): instantiates a node that represents an identifier. Offers
get/set methods to get/set the symbol table entry it represents, which stores
information such as its type/protection/scope.

• makeNode(op o): instantiates a node that represents composite structures
such as operators, statements, or blocks. There should be one for each such
possible different nodes for each different kind of composite structures in the
language. Each offers get/set methods appropriate to what they represent.

• makeNode(): instantiates a null node in order to represent, e.g. the end of
siblings list.

Abstract Syntax Tree: data structure implementation

Joey Paquet, 2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• x.makeSiblings(y)

inserts a new sibling node y in
the list of siblings of node x.

• x.adoptChildren(y)

adopts node y and all its
siblings under the parent x.

Abstract Syntax Tree: data structure implementation

Joey Paquet, 2018

8COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• makeFamily(op, kid1, kid2, …, kidn)): generates a family with n
children under a parent op. For example:

• One such function to create each kind
of sub-tree, or one single variadic
function.

• Some (many) programming languages do
not allow variadic functions.

Abstract Syntax Tree: data structure implementation

Joey Paquet, 2018

9COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Example simple grammar:

Insert semantic actions in the grammar/parser

Joey Paquet, 2018

10COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Example grammar with
semantic actions added.

• AST leaf nodes are created
when the parse reaches leaves
in the parse tree (23, 24)
(makeNode).

• Siblings lists are constructed as
lists are processed inside a
structure (19)
(makeSiblings).

• Subtrees are created when an
entire structure has been
parsed (14, 15, 16, 17, 18, 21)
(makeFamily).

• Some semantic actions are only
migrating information across
the tree (20).

Insert semantic actions in the grammar/parser

Joey Paquet, 2018

11COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Example: parse tree

Joey Paquet, 2018

12COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Example: corresponding AST

Joey Paquet, 2018

13COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• AST variables represents tree nodes that are created, migrated and
grafted/adopted in order to construct an abstract syntax tree.

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

14COMP 442/6421 – Compiler Design

Parse(){
AST Es //blank AST created

//before the call
lookahead = NextToken()
if (E(Es);Match('$')) //passed as a reference

//to parsing functions
//that will create the tree

return(true);
else
return(false);

}

Concordia University Department of Computer Science and Software Engineering

• Each parsing function potentially (i.e. not all of them) defines its own AST nodes
used locally the processing of its own subtree.

• Ts,E's are ASTs produced/used by the T() and E’() functions and returned
by them to the E() function.

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

15COMP 442/6421 – Compiler Design

E(AST &Es){
AST Ts,E's
if (lookahead is in [0,1,(])
if (T(Ts);E'(Ts,E's);) // E' inherits Ts from T
write(E->TE')
Es = E's // Synthetised attribute sent up
return(true) // by way of the Es reference

else // parameter of E()
return(false)

else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

• Some semantic actions will do some semantic checking and/or semantic
aggregation, such as a tree node adopting a child node, or inferring the type of
an expression from two child operands (1).

• Some semantic actions are simply migrating an AST subtree upwards in the parse
tree (2), or sideways to a sibling tree (3).

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

16COMP 442/6421 – Compiler Design

E’(AST &Ti, type &E's){
AST Ts,E'2s
if (lookahead is in [+])
if (Match('+');T(Ts);E'(Ts,E'2s)) // (3) E' inherits Ts from T
write(E'->TE')
E's = makeFamily(+,Ti,E'2s) // (1) AST subtree creation
return(true) // sent up in the parse tree

else // by way of the E’s parameter
return(false)

else if (lookahead is in [$,)]
write(E'->epsilon)
E's = Ti // (2) Synth. attr. is inherited
return(true) // from T (sibling, not child)

else // and sent up
return(false)

}

Concordia University Department of Computer Science and Software Engineering

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

17COMP 442/6421 – Compiler Design

T(AST &Ts){
AST Fs, T's
if (lookahead is in [0,1,(])
if (F(Fs);T'(Fs,T's);) // T' inherits Fs from F
write(T->FT')
Ts = T's // Synthetized attribute sent up
return(true)

else
return(false)

else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

18COMP 442/6421 – Compiler Design

T’(AST &Fi, type &T's){
AST Fs, T'2s
if (lookahead is in [*])
if (Match('*');F(Fs);T'(Fs,T'2s)) // T' inherits Fs from F
write(T'->*FT')
T's = makeFamily(*,Fi,T'2s) // AST subtree creation
return(true) // using left operand migrated

else // from left sibling parse tree
return(false) // received as Fi parameter

else if (lookahead is in [+,$,)]
write(T'->epsilon)
T's = Fi // Synthetized attribute is

// inhertied from F sibling
// and sent up the tree

return(true)
else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

AST generation: implementation in recursive-descent predictive parser

Joey Paquet, 2018

19COMP 442/6421 – Compiler Design

F(AST &Fs){
AST Es
if (lookahead is in [id])
if (Match('id'))
write(F->id)
Fs = makeNode(id) // create a leaf node
return(true) // and send it up the parse tree

else
return(false)

else if (lookahead is in [(])
if (Match('(');E(Es);Match(')'))
write(F->(E))
Fs = Es // Synthetized attribute from E
return(true) // i.e. AST of whole expression

else return(false) // sent up in the parse tree
else return(false) // as AST subtree representing

} // the ‘(E)’ successfully parsed

Concordia University Department of Computer Science and Software Engineering

Attribute migration: example

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

a+b*c

E

T1

T2

T’2

*

F1

id(va:)

T’1

F2

id(vb:)

E’2

T’3

F3

id(vc:)

E’1

+

Es

E’s

Ts

T’s

Ti

Fi

Fs

E’s

E’s

E’sT’s

Fs

Fs

Fs

Fs

Fs

Ti

T’s

T’s
Fi

Ts

Fi
T’s

T’s

a

b c

*

+

parse tree

AST

makeNode

makeNode

makeNode

makeFamily

makeFamily

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

21COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Grammar

Joey Paquet, 2018

22COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

23COMP 442/6421 – Compiler Design

prog

stat
Block

class
List

func
DefList

funcDefList

func
Def

func
Def

...

classList

class
Decl

class
Decl

...

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

24COMP 442/6421 – Compiler Design

funcDef

type

scope
Spec

id

fparm
List

stat
Block

membList

memb
Decl

memb
Decl

...

inherList

id id...

inherList

ε id

scopeSpec

ε

classDecl

inher
List

memb
List

id

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

25COMP 442/6421 – Compiler Design

varDecl

type id

dim
List

membDecl

funcDecl

var
Decl

type id

fparm
List

dimList

num num...

dimList

ε

fparam

type id

dim
List

fparam

ε

fparamList

fparam fparam
...

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

26COMP 442/6421 – Compiler Design

statBlock

stat
OrVarDecl

stat
OrVarDecl

...

statBlock

ε

statOrVarDecl

var
Decl

stat

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

27COMP 442/6421 – Compiler Design

stat

ifStat

rel
Expr

stat
Block

stat
Block

assignStat

var expr

forStat

expr
rel

Expr
assign
Stat

type id

stat
Block

getStat

var

putStat

expr

returnStat

expr

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

28COMP 442/6421 – Compiler Design

expr

arith
Expr

rel
expr

relExpr

expr expr

rel
Op

addOp

artith
Expr

term

arithExpr

term

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

29COMP 442/6421 – Compiler Design

not

factor

factor

var fCall

sign

factor

num

arith
Expr

multOp

term factor

term

factor

Concordia University Department of Computer Science and Software Engineering

Abstract Syntax Tree structural elements

Joey Paquet, 2018

30COMP 442/6421 – Compiler Design

var

var
Element

var
Element

...

varElement

fCall
data

member

dataMember

id

index
List

fCall

id

aParams

indexList

arith
Expr

arith
Expr

...

aParams

expr expr
...

Concordia University Department of Computer Science and Software Engineering

• Wikipedia. Abstract Syntax Tree.

• C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley,
2009. Chapter 7.

References

Joey Paquet, 2018

31COMP 442/6421 – Compiler Design

