COMPILER DESIGN

Generating an Abstract Syntax Tree
using Syntax-Directed Translation

COMP 442/6421 — Compiler Design

Abstract Syntax Tree: Definition

An abstract syntax tree (AST) is a tree representation of the abstract syntactic
structure of source code.

Each node of the tree denotes a construct occurring in the source code.

The syntax is "abstract” in not representing every detail appearing in the real
syntax.

For instance, grouping parentheses have been removed, and a syntactic

construct like an 1f-then-else may be denoted by means of a single node
with three branches.

This distinguishes abstract syntax trees from concrete syntax trees, traditionally
designated parse trees.

Once built, additional information is added to the AST by means of subsequent
processing steps such as semantic analysis and code generation.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design

Abstract Syntax Tree: Goal

- Goal: to aggregate information
Start

gathered during the parse in
order to get a broader /
7
|

understanding of the meaning
of whole syntactic constructs

At the leaves of the tree is fine -
grained information.

num plus num times nl:lm $ num plus num times nﬁm $
31+ 3 * 50 3 31+ 3 * 50 S

Syntax Semantic Values

+ As the information is migrated () (b)

up in the tree, information is _ _ _
Figure 7.1: (a) Parse tree for the displayed expression;

aggregate d. (b) Synthesized attributes transmit values up the parse
tree toward the root.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree: data structure requirements

« The AST structure is constructed bottom-up:
- Alist of siblings is generated.
- The list later is adopted by a parent.

- The AST structure should allow for adding of siblings at either end of the list.

- Some AST nodes require a fixed number of children
- Arithmetic operators
- if-then-else statement
- Some AST nodes require zero or more number of children
- Parameter lists
- Statements in a statement block

- In order to be generally applicable, AST nodes should allow for any number of
children.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree: data structure design

+ According to depth-first-search tree traversal.

- Each node needs connection to:
- Parent: to migrate information upwards in the tree
* Link to parent

- Siblings: to iterate through (1) a list of operands or (2) members of a group,
e,g, members of a class, or statements.
* Link to right sibling (thus creating a single linked list of siblings)

- Link to leftmost sibling (in case one needs to traverse the list as a sibling is being
processed).

- Children: to generate/traverse the tree
- Link to leftmost child (who represents the head of a linked list of children).

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree: data structure design

.-'.-Té-—{l- - -

leftmost sibling
leftmost child

i
I
I
I
I
I
I
I
I

parent

right sibling ———

Figure 7.12: Internal format of an AST node. A dashed line connects
a node with its parent; a dotted line connects a node with its
leftmost sibling. Each node also has a solid connection to its

leftmost child and right sibling.

Concordia University

Department of Computer Science and Software Engineering

Joey Paquet, 2018

COMP 442/6421 — Compiler Design

Abstract Syntax Tree: data structure implementation

- makeNode(t)

factory method that creates/returns a node whose members are adapted to the
type of the parameter t. For example:

- makeNode(intNum 1i):instantiates a node that represents a numeric literal
value. Offers a get method to get the value it represents.

makeNode(id n):instantiates a node that represents an identifier. Offers
get/set methods to get/set the symbol table entry it represents, which stores
information such as its type/protection/scope.

makeNode(op 0): instantiates a node that represents composite structures
such as operators, statements, or blocks. There should be one for each such
possible different nodes for each different kind of composite structures in the
language. Each offers get/set methods appropriate to what they represent.

- makeNode(): instantiates a null node in order to represent, e.g. the end of
siblings list.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design

Abstract Syntax Tree: data structure implementation

- x.makeSiblings(y)

inserts a new sibling node y in
the list of siblings of node x.

- X.adoptChildren(y)

adopts node y and all its
siblings under the parent x.

Concordia University

function maxkeSiBLiNGs(i) returns Node
{* Find the rightmost node in this list
xsibs «— this
while xsibs.rightSib # null do xsibs « xsibs.rightSib
f* Join the lists
ysibs « y.le ftmostSib
xsibs.rightSib « ysibs
{* Set pointers for the new siblings
ysibs . le ftmost5ib «— xsibs. le ftmostSib
ysibs . parent «— xsibs . parent
while ysibs.rightSib # null do
ysibs « ysibs.rightSib
ysibs . le ftmostSib « xsibs . le fimostSib
ysibs . parent « xsibs. parent
return (ysibs)

end

function aporrCHiLpreN(v) returns Node
if this.le ftmostChild # null
then this.le fimostChild . makeSiBLINGS(1/)
else
ysibs « y.le ftmost5ib
this.le ftmostChild « ysibs
while ysibs # null do
ysibs . parent « this
ysibs « ysibs . rightSib

Department of Computer Science and Software Engineering

Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree: data structure implementation

- makeFamily(op, kid,, kid,, .., kid,)): generatesa family with n
children under a parent op. For example:

function makeFamy{ op, kid1, kid2) returns Node
return (makeNode(op) . aporrCriLoren(kid1 . makeSisLinGs(kid2)))

end

« One such function to create each kind
of sub-tree, or one single variadic
function.

« Some (many) programming languages do
not allow variadic functions.

()

Figure 7.15: AST structures: A specific node is designated by an
ellipse. Tree structure of arbitrary complexity is designated by
a triangle.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Insert semantic actions in the grammar/parser

« Example simple grammar:

Start — Stmt $
Stmt — id assign E
| if lparen E rparen Stmt else Stmt fi
| if Iparen E rparen Stmit fi
| while lparen E rparen do Stmt od
| begin Stmts end
Stmts — Stmts semi Stmit
| Stmt
E — E |]|l,.|$ T
| T
T — id
| num

1
2
3
4
5
B
!
5
9
0

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Insert semantic actions in the grammar/parser

Example grammar with
semantic actions added.

AST leaf nodes are created
when the parse reaches leaves
in the parse tree (23, 24)
(makeNode).

Siblings lists are constructed as
lists are processed inside a
structure (19)
(makeSiblings).

Subtrees are created when an
entire structure has been
parsed (14, 15, 16, 17, 18, 21)
(makeFamily).

Some semantic actions are only
migrating information across
the tree (20).

Concordia University

1 Start — Stmty $

return (asf)

2 StMipeur — idper aSSIQN Epxpr
result « makeFamiy(assign, var, expr)

3 | it lparen E, rparen Stmt; fi

result < makeFammy(if, p, s, makeNope())

| if Iparen E, rparen Stmi,; else Stmt; fi
result < makeFammy(if, p,s1,52)

| while Iparen E, rparen do Stmt; od
result < makeFamiy(while, p,s)

| begin Stmts,,, end
result «— maxeFamiy(block, list)

StMtSresutr — SIMtSsop0r SEMI StMtsens
result « sofar.MakESIBLINGS(next)

| St s
result « first

— E4 plus Ta
result «— makeFamiy(plus, el,¢2)

10 | T.
result «— e

Erﬂu]'f

11 Trﬂn!!

— ipar
result «— makeNope(var)

12 | numgg
result «— maxeNope(val)

Department of Computer Science and Software Engineering

© @ © ® @ @ 6

® 6 @ 6 6

Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Example: parse tree

Figure 7.18: Concrete syntax tree.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Example: corresponding AST

Figure 7.19: AST for the parse tree in Figure 7.18.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design

AST generation: implementation in recursive-descent predictive parser

Parse(){

AST Es //blank AST created

//before the call
lookahead = NextToken()

if (E(Es);Match('$')) //passed as a reference
//to parsing functions

//that will create the tree
return(true);

else
return(false);

- AST variables represents tree nodes that are created, migrated and
grafted/adopted in order to construct an abstract syntax tree.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
AST generation: implementation in recursive-descent predictive parser

E(AST &Es){
AST Ts,E's
if (lookahead is in [0,1,(])
if (T(Ts);E'(Ts,E's);) // E' inherits Ts from T
write(E->TE")
Es = E's // Synthetised attribute sent up
return(true) // by way of the Es reference
else // parameter of E()
return(false)
else
return(false)

- Each parsing function potentially (i.e. not all of them) defines its own AST nodes
used locally the processing of its own subtree.

- Ts,E"s are ASTs produced/used by the T() and E’ () functions and returned
by them to the E() function.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
AST generation: implementation in recursive-descent predictive parser

E’ (AST &Ti, type &E's){
AST Ts,E'2s
if (lookahead is in [+])
if (Match('+"');T(Ts);E'(Ts,E'2s)) // (3) E' inherits Ts from T
write(E'->TE")
E's = makeFamily(+,Ti,E'2s) // (1) AST subtree creation
return(true) // sent up in the parse tree
else // by way of the E’s parameter
return(false)
else if (lookahead is in [$,)]
write(E'->epsilon)
E's = Ti // (2) Synth. attr. is inherited
return(true) // from T (sibling, not child)
else // and sent up
return(false)

}

- Some semantic actions will do some semantic checking and/or semantic
aggregation, such as a tree node adopting a child node, or inferring the type of
an expression from two child operands (1).

- Some semantic actions are simply migrating an AST subtree upwards in the parse
tree (2), or sideways to a sibling tree (3).

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
AST generation: implementation in recursive-descent predictive parser

T(AST &Ts){
AST Fs, T's
if (lookahead is in [0,1,(])
if (F(Fs);T'(Fs,T's);) // T' inherits Fs from F
write(T->FT")
Ts = T's // Synthetized attribute sent up
return(true)
else
return(false)
else
return(false)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
AST generation: implementation in recursive-descent predictive parser

T° (AST &Fi, type &T's){
AST Fs, T'2s
if (lookahead is in [*])
if (Match('*');F(Fs);T'(Fs,T'2s)) T' inherits Fs from F
write(T'->*FT")
T's = makeFamily(*,Fi,T'2s) AST subtree creation
return(true) using left operand migrated
else from left sibling parse tree
return(false) received as Fi parameter
else if (lookahead is in [+,%,)]

write(T'->epsilon)

T's = Fi Synthetized attribute is
inhertied from F sibling
and sent up the tree

return(true)

else
return(false)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
AST generation: implementation in recursive-descent predictive parser

F(AST &Fs){
AST Es
if (lookahead is in [id])
if (Match('id'))
write(F->id)
Fs = makeNode(id) // create a leaf node
return(true) // and send it up the parse tree
else
return(false)
else if (lookahead is in [(])
if (Match('(');E(Es);Match(')"))
write(F->(E))
Fs = Es // Synthetized attribute from E
return(true) // 1i.e. AST of whole expression
else return(false) // sent up in the parse tree
else return(false) // as AST subtree representing
// the ¢(E)’ successfully parsed

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Attribute migration: example

ma keNode

|
id(v,:1) R makeFamily

parse tree @makeNode

id(vy:t)

A
@ma keNode

id(.VCZ‘C)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Abstract Syntax Tree structural elements

prog
classDecl
funcDecl
funcHeod
funcDef
funcBody
vardec L
statement

assignStat
statBlock
expr
relExpr
arithExpr
sign

term
factor

varigble

functionCall
idnest

indice
arraySize
type
fParams
aParoms
fraramsTail
afgromsTail

assignOp
reldp
addp
mult0p

Concordia University

COMP 442/6421 — Compiler Design
Grammar

{classDecl} {funcDef} ‘program’ funcBody °;'

‘class® "id" [":* ‘dd® {'," "id'}] “{" {worDecl} {funchecl} "}' *;°

tl}lpE' lidl I{i Fﬂms l}l i;l

type [“id" ‘se°] "id' (' fPorams ')’
funcHead funcBody ';°

"' {varDecl} {statement} '}°

type ‘id' {orraysize} °;°'

assignstat ';°

Yif! " expr ') "then' stotBlock 'else’ stotBlock ;'

"far' (' type 'id" assignlp expr °;' relExpr ';' assignStat)" stotBlock ;'

‘get’ “(* wariaoble)" ';°
"put’ (" expr ') G
‘return® ("' expr ‘)" "
varioble assignOp expr

' {stotement} '}' | stotement | EPSILON
arithExpr | relExpr
arithExpr relOp arithExpr
urit.il'ufxpr add0p term | term
' '

term multOp factor | factor
varicble

functionCal L

‘intNum® | *floatMum'

(' arithExpr ')°

‘not’ foctor

sign foctor

{idnest} 'id" {indice}
{idnest} 'id" (' aParams ‘)"
‘id' {indice} ".'

Yid' (" aParams ")' ".'

'I' arithExpr ']"

" ‘intNum' *]°

‘int' | 'fleat' | ‘id"

type "id' {orraySize} {fPoramsTail} | EPSILON
expr {aParomsTail} | EPSILOM
Y type 'id' {grroySize}

. expr

.Eq. I 'I"IEQ' I nlti | lEtl | llEq. I 'EEI:I'
l+i | E_W | inr_h
l*l | l‘Fl | landl
Department of Computer Science and Software Engineering

Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

< classList > < funcDefList >

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design

Abstract Syntax Tree structural elements

< classDecl >

inherList

< inherlList >

< memblList >

scopeSpec

Concordia University

Department of Computer Science and Software Engineering

Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

< funcDecl > < fparam > @
@ 0 fparm @ 0 dim

List List

membDecl

dimList
varDecl

e

@ 0 < fparamList >
dim

List

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

statBlock

< statBlock >

OrVarDecl OrVarDecl

statOrVarDecl

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

assign
Stat

getStat putStat returnStat

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

arithExpr

<:: addOp

artith
Expr

<:: relExpr ::)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

e

factor

factor

factor

(&

Cm) (w)

factor factor

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
Abstract Syntax Tree structural elements

<dataMember> < fCall >

aParams

varElement

data
member

< indexList > < aParams >

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

COMP 442/6421 — Compiler Design
References

- Wikipedia. Abstract Syntax Tree.

- C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr,, Crafting a Compiler, Adison-Wesley,
2009. Chapter 7.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2018

