
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 3 – GRAMMARS AND PARSING

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

A2 Introduction - Key Points
• The parser is inherently more complex than the lexer
• CFGs are more complex than regular languages

• The language’s grammar is fully featured

• Classes, inheritance, control statements, nested function/array calls, numerical/Boolean arithmetic, etc.

• demo

• New keyword: void

• No grammar design choices, unlike A1

• Testing is more complex

• Some source files provided
• demo

2

Tokens Parse Tree Abstract Syntax TreeGrammar SDT

Grammars
• Context free grammars are a general class of formal grammars,

whose rules can be applied regardless of context
• In the context of compiler design, we are interested in grammars which are

deterministic

• For the project, we will be using an LL(1) grammar

3

Grammars - LL(1)
• Left to Right
• Traversing input string from left to right

• Leftmost parse derivation
• In the derivation, the leftmost non-terminal is expanded first

• 1 lookahead token
• A unique production can be selected and applied, by looking at the next (only 1) terminal

symbol

• LL(k) grammars can exist for k ≥ 0, and all are deterministic
• They are a proper subset of LR(k) grammars, which are a proper subset of

CFGs

4

Grammar Transformation Tools - demo
• Dr Paquet’s tool

• AtoCC grammar checker

• University of Calgary tool

5

https://smlweb.cpsc.ucalgary.ca/

Interlude - Pattern: Immutable Objects
• Idea: data whose perceived state is unchanging
• Often, data use in a program is unchanging

• Features

• Thread-safe (n-read, 0-write)

• Stateless

• No side-effects

• Allows easy function chaining

• Implementation

• Member variables are initialized on object creation, after which they are constant

• Can be made public

• Functions have no side effects, and if changes occur, they create new objects

6

Interlude - Immutable Token
public class Token{

public final String lexeme;

public final Type type;

public final int line;

public final int column;

public Token(String lexeme, Type type, int line, int column){

this.lexeme = lexeme;

this.type = type;

this.line = line;

this.column = column;

}

}

7

Interlude - Immutable Vector

8

Parsing

9

Tokens Parse Tree Abstract Syntax TreeGrammar SDT

• Inputs:
• Token stream/list

• LL(1) grammar, first sets, follow sets

• Output:
• Abstract syntax tree

• Derivation proof

Parsing - Parse Trees
• The parse tree is a representation of the program’s syntactial derivation
• It is not necessarily useful to the compilation process
• Transformed LL(1) grammars create distorted and messy parse trees

• Many nodes of the tree are syntactically important, but semantically irrelevant or redundant

• Brackets, semicolons, keywords, etc.

• We would like to transform it into a more useful representation
• Abstract Syntax Trees

• The parsing process also represents a program’s syntactical derivation
• An explicit parse tree is unnecessary

• Instead, think along the lines of a virtual parse tree, from which the AST is instantly generated

• The parse tree exist only conceptually, represented by the state of the parser

• More on this next lab (SDT)

10

