
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 4 – SYNTAX DERIVED TRANSLATION AND
ABSTRACT SYNTAX TREES

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Parsing

2

Tokens Parse Tree Abstract Syntax TreeGrammar SDT

• Inputs:
• Token stream/list

• LL(1) grammar, first sets, follow sets

• Output:
• Abstract syntax tree

• Derivation proof

Parsing - Parse Trees
• The parse tree is a representation of the program’s syntactical derivation

• It is not necessarily useful to the compilation process

• We would like to transform it into a more useful representation
• Abstract Syntax Trees

• The parsing process also represents a program’s syntactical derivation
• An explicit parse tree is unnecessary

• Instead, think along the lines of a virtual parse tree, from which the AST is instantly generated

• The parse tree exist only conceptually, represented by the state of the parser

3

Abstract Syntax Trees
• Represents semantics of parsed program
• Contains only meaningful constructs
• Nodes contain semantic information, relevant to later compiler phases
• No syntax-only constructs: (punctuation, keywords, grammar transformation artifacts, etc.)

• Plan out what nodes and subtrees you’ll want in your AST
• Use these to help design the semantic rules which augment your grammar
• The lecture slides are a good starting point

• There are multiple ways to construct the tree while parsing
• Keep in mind the fundamental operations:
• Making nodes
• Pulling token information into the node (type, location, lexeme)

• Grouping nodes
• Parents, siblings

• Some examples . . .

4

https://users.encs.concordia.ca/~paquet/wiki/images/3/35/COMP442-6421.8.SDTAST.ppt

Tree Traversal - A Primer
• Tree traversal will be required to effectively use the AST in later phases of the

compiler
• Algorithms
• Pre-order traversal (required for compiler)

• Post-order traversal (required for compiler)

• Binary in-order traversal (likely not required)

• Generalized in-order traversal (likely required for compiler)

• Euler tour (generalization of the above 3 algorithms)

• Breadth-first traversal (likely not required)

• These will be covered in more detail next lab

• Design trees with these in mind

5

AST Visualization - DOT and GVEdit
• During the compilation process, the AST exist only in program memory.
• We would like to inspect it

• DOT file format:
• An open-source text format for representing graphs

• Numbered nodes and relations, straightforward to generate while traversing a tree

• GVEdit:
• An open-source tool for visualizing (and editing) DOT files

• Some examples . . .

6

https://en.wikipedia.org/wiki/DOT_(graph_description_language)#Directed_graphs
https://www.graphviz.org/download/

