
 1 

Concordia University 
Department of Computer Science  

and Software Engineering 
 

Advanced program design with C++ 
COMP 345 --- Fall 2018 

 

Team project assignment #2 
 
Deadline:   November 2nd, 2018 
Evaluation:   8% of final mark 
Late submission:  not accepted 
Teams:   this is a team assignment 

 

Problem statement  

 
This is a team assignment. It is divided into distinct parts. Each part is about the development of a part of the topic 
presented as the team project. Even though it is about the development of a part of your team project, each 
assignment is to be developed/presented/tested separately. The description of each part describes what are the 
features that the part should implement, and what you should demonstrate. Note that the following descriptions 
describe the baseline of the assignment, and are related to the project description. See the course web page for a 
full description of the team project, as well as links to the details of the game rules to be implemented. 
 
Part 1: Game start 
 
Provide a group of C++ classes that implement a user interaction mechanism to start the game by allowing the 
player to 1) select a map from a list of map files as stored in a directory 2) select the number of players in the 
game (2-6 players). The code should then use the map loader to load the selected map, create all the players, 
assign dice rolling facilities to the players, create a deck of cards, and assign an empty hand of cards to each 
player. You must deliver a driver that demonstrates that 1) different valid maps can be loaded and their validity is 
verified (i.e. it is a connected graph, etc), and invalid maps are gracefully rejected; 2) the right number of players 
is created, a deck with the right number of cards is created.  
 
Part 2: Game play: startup phase 
 
Provide a group of C++ classes that implements the startup phase following the official rules of the game of Risk. 
This phase is composed of the following sequence:  

1. The order of play of the players in the game is determined randomly.   
2. All countries in the map are randomly assigned to players one by one in a round-robin fashion.  
3. Players are given a number of armies (A), to be placed one by one in a round-robin fashion on some of 

the countries that they own, where A is:  

 If 2 players, A=40 

 If 3 players, A=35 

 If 4 players, A=30 

 If 5 players, A=25 

 If 6 players, A=20 
You must deliver a driver that demonstrates that 1) all countries in the map have been assigned to one and only 
one player; 2) all players have eventually placed the right number of armies on their own countries after army 
placement is over.  
 
 
 
 



 2 

Part 3: Game play: main game loop  
 
Provide a group of C++ classes that implements the main game loop following the official rules of the game of 
Risk. During the main game loop, proceeding in a round-robin fashion as setup in the startup phase, every player 
is given the opportunity to do sequentially each of the following actions during their turn:  

1. Reinforcements phase 
2. Attack phase 
3. Fortification phase 

This loop shall continue until only one player controls all the countries in the map, at which point a winner is 
announced and the game ends. You must deliver a driver that demonstrates that 1) every player gets turns in a 
round-robin fashion and that their reinforcement(), attack() and fortification() methods are called 2) the 

game ends when a player controls all the countries (the driver should explicitly give all the countries to one player, 
i.e. no real code for battles needs to be executed).   
 
Part 4: Main game loop: reinforcement phase  
 
Provide a group of C++ classes that implement the reinforcement phase following the official rules of the game of 
Risk. In the reinforcement phase, the player gets a number of armies (A) to place on its countries, where A is:  

 Number of countries owned on the map, divided by 3 (rounded down), with a minimum of 3.  

 Continent-control value of all continents totally controlled by that player.  

 Armies resulting in card exchange, if possible. If a player owns more than 5 cards, it must exchange 
cards (exchanging cards should be done inside the Hand’s exchange() method).  

The player must then place all these armies on some of the countries it owns, as it sees fit (for now, it does not 
matter which). You must deliver a driver that demonstrates that 1) a player receives the right number of armies in 
the reinforcement phase (showing different cases); 2) the player has effectively placed this exact number of new 
armies somewhere on the map by the end of the reinforcement phase.   
 
Part 5: Main game loop: attack phase 
 
Provide a group of C++ classes that implement the attack phase following the official rules of the game of Risk. In 
this phase, the player is allowed to declare a series of attacks to try to gain control of additional countries, and 
eventually control the entire map. The attack phase follows the following loop:  

 The player decides if it will attack or not. If not, the attack phase is over.  

 The player selects one of its countries to attack from, and one of the neighbors of this country to attack 
(i.e. the attacked country belongs to another player). The attacking country must have at least 2 armies 
on it.  

 The attacker and defender players choose the number of dice to roll for their attack/defense. The attacker 
is allowed 1 to 3 dice, with the maximum number of dice being the number of armies on the attacking 
country, minus one. The defender is allowed 1 to 2 dice, with the maximum number of dice being the 
number of armies on the defending country.  

 The dice are rolled for each player and sorted, then compared pair-wise. For each pair starting with the 
highest, the player with the lowest roll loses one army. If the pair is equal, the attacker loses an army.  

 If the attacked country runs out of armies, it has been defeated. The defending country now belongs to 
the attacking player. The attacker is allowed to move a number of armies from the attacking country to the 
attacked country, in the range [1 to (number of armies on attacking country -1)].  

 The player is allowed to initiate any number of attacks per turn, including 0.       
You must deliver a driver that demonstrates that 1) only valid attacks can be declared (i.e. valid attacker/attacked 
country); 2) only valid number of dice can be chosen by the attacker/defender; 3) given known dice values, that 
the right number of armies are deducted on the attacker/defender; 4) the attacker is allowed to initiate multiple 
attacks, until it declares that it does not want to attack anymore.  
 
Part 6: Main game loop: fortification phase 
 
Provide a group of C++ classes that implement the fortification phase following the official rules of the game of 
Risk. In the fortification phase, the player is allowed to move a number of armies (X) from one of its countries (the 



 3 

source country) to one of its neighboring countries that it also owns (the target country). X must be in the range [1 
to (number of armies on the source country - 1)]. You must deliver a driver that demonstrates that 1) only valid 
countries can be selected as source/target; 2) only a valid number of armies can be moved; 3) the right number of 
armies is effectively moved.  
 

Assignment submission requirements and procedure 

 
You are expected to submit a group of C++ files implementing a solution to each of the separate problems stated 
above (Part 1, 2, 3, 4, 5, 6). Your code must include a driver (i.e. a main function) for each part that allows the 

marker to observe the execution of each part during the lab demonstration. Each driver should simply create the 
components described above and demonstrate that they behave as mentioned above.  

 
You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment 
Submission system under the category “programming assignment 2”. Late assignments are not accepted. The file 
submitted must be a .zip file containing all your code. You are allowed to use any C++ programming environment 
as long as you can demonstrate your assignment in the labs. 

 
Evaluation Criteria 
 
Knowledge/correctness of game rules:                          2 pts (indicator 4.1) 
Compliance of solution with stated problem (see description above):         12 pts (indicator 4.4) 
Modularity/simplicity/clarity of the solution:          2 pts (indicator 4.3)    
Proper use of language/tools/libraries:        2 pts (indicator 5.1) 
Code readability: naming conventions, clarity of code, use of comments:     2 pts (indicator 7.3) 
Total                                  20 pts (indicator 6.4) 
 


