
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2018

Assignment 2, Syntactic Analyzer

Deadline: Monday February 26th, 2018
Evaluation: 10% of final grade
Late submission: penalty of 50% for each late working day

You have design and implement a syntactic analyzer for the language specified by the grammar specified below. The
syntactical definition is using the following conventions:

• Terminals (lexical elements, or tokens) are represented in single quotes 'likeThis'.
• Non-terminals are represented in italics likeThis.

• The empty phrase is represented by EPSILON.

• EBNF-style repetition notation is represented using curly brackets {like this}. It represents zero or more

occurrence of the sentential form enclosed in the brackets.

• EBNF-style optionality notation is represented using square brackets [like this]. It represents zero or one

occurrence of the sentential form enclosed in the brackets.

• The non-terminal <prog> is the starting symbol of the grammar.
Except from the EBNF constructs, the grammar is expressed using the syntax used by the kfgEdit AtoCC toolkit
application.

Work to be done

• Remove all the EBNF notations and replace them by right-recursive list-generating productions. Analyze the

syntactical definition. List in your documentation all the ambiguities and left recursions, or any error you may have
found in the grammar. Modify the productions so that the left recursions and ambiguities are removed without
modifying the language. You should obtain a set of productions that can be parsed using the top-down predictive
parsing method, i.e. an LL(1) grammar. Include the transformed grammar in your documentation.

• Derive the FIRST and FOLLOW sets for each non-terminal in your transformed grammar and list them in your
documentation.

• Implement a predictive parser (recursive descent or table-driven) for your modified set of grammar rules.
• The result of the parser should be the creation of a tree data structure representing the parse tree as identified by

the parsing process. This tree will become the intermediate representation used by the two following assignments.
• Your parser should write to a file the derivation that proves that the source program can be derived from the starting

symbol (exactly as in the right side of the window of the “derivation” tab of the kfgEdit tool).
• The parser should properly identify all the errors in the input program and print a meaningful message to the user for

each error encountered. The error messages should be informative on the nature of the errors, as well as the location
of the errors in the input file.

• The parser should implement an error recovery method that permits to report all errors present in the source code.
• Write a set of source files that enable to test the parser for all syntactical structures involved in the language. Include

cases testing for a variety of different errors to demonstrate the accuracy of your error reporting and recovery.
• Note that the grammar analysis/transformation process can be greatly simplified by the use of tools such as the

kfgEdit AtoCC tool. See the lab resources for more information.

Grammar

prog -> {classDecl} {funcDef} 'program' funcBody ';'
classDecl -> 'class' 'id' [':' 'id' {',' 'id'}] '{' {varDecl} {funcDecl} '}' ';'
funcDecl -> type 'id' '(' fParams ')' ';'
funcHead -> type ['id' 'sr'] 'id' '(' fParams ')'
funcDef -> funcHead funcBody ';'
funcBody -> '{' {varDecl} {statement} '}'
varDecl -> type 'id' {arraySize} ';'
statement -> assignStat ';'
 | 'if' '(' expr ')' 'then' statBlock 'else' statBlock ';'
 | 'for' '(' type 'id' assignOp expr ';' relExpr ';' assignStat ')' statBlock ';'
 | 'get' '(' variable ')' ';'
 | 'put' '(' expr ')' ';'
 | 'return' '(' expr ')' ';'
assignStat -> variable assignOp expr
statBlock -> '{' {statement} '}' | statement | EPSILON
expr -> arithExpr | relExpr
relExpr -> arithExpr relOp arithExpr
arithExpr -> arithExpr addOp term | term
sign -> '+' | '-'
term -> term multOp factor | factor
factor -> variable
 | functionCall
 | 'intNum' | 'floatNum'
 | '(' arithExpr ')'
 | 'not' factor
 | sign factor
variable -> {idnest} 'id' {indice}
functionCall -> {idnest} 'id' '(' aParams ')'
idnest -> 'id' {indice} '.'
 | 'id' '(' aParams ')' '.'
indice -> '[' arithExpr ']'
arraySize -> '[' 'intNum' ']'
type -> 'int' | 'float' | 'id'
fParams -> type 'id' {arraySize} {fParamsTail} | EPSILON
aParams -> expr {aParamsTail} | EPSILON
fParamsTail -> ',' type 'id' {arraySize}
aParamsTail -> ',' expr
assignOp -> '='
relOp -> 'eq' | 'neq' | 'lt' | 'gt' | 'leq' | 'geq'
addOp -> '+' | '-' | 'or'
multOp -> '*' | '/' | 'and'

Tokens

Keywords program | class |

if | then | else | for | get | put | return |

int | float

Opreators eq (==) | neq (<>) | lt (<) | gt (>) | leq (<=) | geq (>=)

 + | - | * | /

 not | and | or

 =

 sr (::)

Punctuation : | , | . | ; | [|] | { | } | (|)

Id follows specification for program identifiers found in assignment#1
floatNum follows specification for float literals found in assignment#1

intNum follows specification for integer literals found in assignment#1

Example program

class InheritedUtility {
 int member1;};

class Utility : InheritedUtility {
 int var1[4][5][7][8][9][1][0];
 float var2;
 int findMax(int array[100]);
 int findMin(int array[100]);};

int Utility::findMax(int array[100]){
 int maxValue;
 int idx;
 maxValue = array[100];
 for(int idx = 99; idx > 0; idx = idx - 1){
 if(array[idx] > maxValue) then {
 maxValue = array[idx];}
 else{};
 };
 return (maxValue);};

int Utility::findMin(int array[100]){
 int minValue;
 int idx;
 minValue = array[100];
 for(int idx = 1; idx <= 99; idx = (idx) + 1) {
 if(array[idx] < maxValue + 1 / 8 or idx) then {
 maxValue = array[idx];}
 else{};
 };
 return (minValue);};

float randomize(){
 float value;
 value = 100 * (2 + 3.0 / 7.0006);
 value = 1.05 + ((2.04 * 2.47) - 3.0) + 7.0006 > 1 and not - 1;
 return (value);};

program {
 int sample[100];
 int idx;
 int maxValue;
 int minValue;
 Utility utility;
 Utility arrayUtility[2][3][6][7];
 for(int t = 0; t<=100 ; t = t + 1) {
 get(sample[t]);
 sample[t] = (sample[t] * randomize());
 };
 maxValue = utility.findMax(sample);
 minValue = utility.findMin(sample);
 utility.var1[4][1][0][0][0][0][0] = 10;
 arrayUtility[utility.var1[1][2][3][4][5][6][idx+maxValue]][1][1][1].var2 = 2.5;
 put(maxValue);
 put(minValue);};

Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 2”. The file submitted must be a .zip file containing:

• all your code
• a set of input files to be used for testing purpose, as well as a printout of the resulting output of the program for each

input file (derivation and error reporting, as described above)
• a simple document containing the information requested above

You are also responsible to give proper compilation and execution instructions to the marker in a README file. If the
marker cannot compile and execute your programs, you might have to have a meeting for a demonstration.

Evaluation criteria and grading scheme

Analysis:

List of left recursions and ambiguities in the original grammar. ind 2.1 1 pt

Description of method used to apply changes to the original grammar. ind 2.2 2 pts

Correctly transformed grammar and FIRST/FOLLOW sets. ind 2.2 2 pts

Design/implementation:

Description/rationale of the overall structure of the solution and the roles of the individual
components used in the applied solution.

ind 4.3 2 pts

Correct implementation of a top-down predictive parser following the grammar given in this
handout.

ind 4.4 10 pts

Output of clear error messages (error description and location). ind 4.4 2 pts

Output of a derivation in a separate stream or file. ind 4.4 2 pts

Implementation of an error recovery mechanism. ind 4.4 2 pts
Creation of a tree data structure as intermediate representation of the program ind 4.4 7 pts

Completeness of test cases. ind 4.4 15 pts

Use of tools:

Description/justification of tools/libraries/techniques used in the analysis/implementation. ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the analysis/implementation. ind 5.1 3 pts

Total 50 pts

