
Copyright Joey Paquet, 2000 1

Basic Behavioral Modeling

Lecture 4

Copyright Joey Paquet, 2000 2

Part I

Use Cases

Copyright Joey Paquet, 2000 3

Use Cases
• A use case model describes a system’s functionality from

the point of view of the different actors that interact with
the system to receive services.

• A use case diagram shows the relationships among actors
and use cases within a system. Use case diagrams address
the static use case view of a system.

• An actor (actor class) is a predefined stereotype of type
denoting an entity outside the system that interacts with
use cases in the system.

• A use case is a class that defines a set of use case
instances. It specifies a set of actions that a system
performs that yields a result of value to an actor.

Copyright Joey Paquet, 2000 4

Actors
• A coherent set of roles that users of use cases play when

they interact with use cases

• Typically represents the role that a human, hardware
device or another system plays with the system

• Actors are not part of the system

• As an actor is a class, it can be generalized

Copyright Joey Paquet, 2000 5

Use Cases
• A coherent unit of externally visible functionality provided

by a system unit

• Used to define a piece of coherent behavior without
revealing the internal details

• A use case describes what the system does, but does not
specify how it does it.

• The behavior of a use case can be specified by describing
on or more flow of events written in plain text in a note in
the diagram

Copyright Joey Paquet, 2000 6

Example: ATM
• ValidateUser use case

– main flow of events:
• the use case starts when the system prompts the Customer for a

PIN number. The Customer then enters a PIN via the keypad,
and presses the enter button. The system then checks if the PIN
is valid. If the PIN is valid, the system acknowledges the entry,
thus ending the use case.

– exceptional flows of events:
• the Customer can cancel a transaction any time by pressing the

Cancel button, thus restarting the use case

• the Customer can clear a PIN any time before committing it
and reenter a new PIN

• If the Customer enters an invalid PIN, the use case restarts

Copyright Joey Paquet, 2000 7

Use Cases and Scenarios
• Flows of events are first described in text

• As requirements are more understood, sequence
diagrams are used to describe the main flow and
exceptional flows of events

• Each sequence is called a scenario

• Each scenario is an instance of the use case

• Modestly complex systems might have a few
dozen use cases and each of these can expand to
several dozen scenarios

Copyright Joey Paquet, 2000 8

Use Cases and Collaborations
• Use cases capture an abstract view of the behavior

of the system

• Ultimately, use cases have to be implemented as a
society of interacting objects

• This society of elements is modeled as a
collaboration diagram

• Finding the minimal set of well-structured
collaborations that satisfy all the scenarios
specified in all the use cases of the system is the
focus of the system’s architecture design

Copyright Joey Paquet, 2000 9

Organizing Use Cases
• Can be grouped in packages

• Can be organized by specifying generalization,
include and extend relationships among them

association: communication path between
actors and use cases
extend: insertion of an additional behavior
into a base use case. Can be used to add
optional behavior
generalization: specifies inheritance between
two use cases
include: factorization of use cases into simpler
use cases

Copyright Joey Paquet, 2000 10

Use Case Diagrams
• Roles

– Model the context of the system. Define what
are the actors that are external to the system

– Model the requirements of the system. Define
what the system should do from an external
point of view

Copyright Joey Paquet, 2000 11

Example

Copyright Joey Paquet, 2000 12

Example

Copyright Joey Paquet, 2000 13

Modeling the behavior of an element
• Use cases can be used at various levels of abstraction:

system, subsystem, module, … , class

• Can be used as a forum between the domain experts, the
end users and the developers

• Gives a first impression of the element to developers by
giving the intent of the element

• Useful for testing purposes

Copyright Joey Paquet, 2000 14

Modeling the behavior of an element
• Identify the actors that interact with the element.

• Organize actors using generalizations

• For each actor, consider its main scenario of interaction
with the element

• Consider also the exceptional interaction scenarios

• Organize these behaviors as use cases, applying include
and extend relationships to factor common behavior

Copyright Joey Paquet, 2000 15

Hints and Tips
• Every use case should represent a distinct and identifiable

behavior of an element of the system

• Factor common behavior and apply include relationships

• Factor optional or variants of behavior and apply extend
relationships

• Define a minimal set of scenarios

• Each diagram should serve a purpose and be restricted to a
specific context, hiding details that are not part of this
context

Copyright Joey Paquet, 2000 16

Part II

Interaction Diagrams

Copyright Joey Paquet, 2000 17

Interaction Diagrams
• Shows an interaction (a set of objects and their

relationships) including exchanged message

• Two kinds of interaction diagrams:
– sequence diagrams: emphasizes the time ordering of

messages exchanged to provide a service or react to
events. Used to model scenarios (normally a single
scenario per diagram)

– collaboration diagrams: emphasizes the structural
organization of the objects that send or receive
messages in . Used to model whole use cases (normally
a collection of scenarios)

Copyright Joey Paquet, 2000 18

Sequence Diagrams
• Objects that participate in the interaction are placed along

the X-axis, initiators to the left.

• Exchanged messages are placed along the Y-axis, in order
of occurrence from top to bottom.

• Two features differentiate sequence diagrams from
collaboration diagrams:
– the object lifeline: represents the existence of an object over a

period of time. Represented by a vertical dashed line.

– The focus of control: represents the period of time during which
an object is performing an action. Represented by a vertical thin
rectangle over the object lifeline.

Copyright Joey Paquet, 2000 19

Sequence Diagrams
• Can represent the dynamic creation and destroying of

objects

• The lifeline of an object starts only when the object is
created and ends when the object is destroyed.

• Stereotypes <<create>> and <<destroy>> can be used to
represent these lifecycle milestones.

• A return message can be sent when a focus of control ends

• Recursion and internal function calls can be represented
with nested focus of controls

• A sequence diagram can begin or end at any point in a
sequence. It is reasonable to break-up parts of a large flow
in separate diagrams.

Copyright Joey Paquet, 2000 20

Sequence Diagram Construction
• Set the context for the interaction, e.g. system, subsystem,

operation, class, scenario

• Identify the objects that pay a role in the interaction

• Set the lifeline for each object

• Starting with the initiating message, lay out the sequence
of messages from to to bottom

• Adorn each object’s lifeline with focuses of control if
needed

• If several sequence diagrams are needed to model different
scenarios, group them in a package, with meaningful
names to differentiate each diagram in the package

Copyright Joey Paquet, 2000 21

Example of Sequence Diagram

Copyright Joey Paquet, 2000 22

Example of Sequence Diagram

Copyright Joey Paquet, 2000 23

Collaboration Diagrams
• A collection of vertices representing objects, connected

with arcs to signify interaction representing message
passing

• Two features that differentiate collaboration diagrams from
sequence diagrams:
– path stereotypes: indicates how an object is linked to another, e.g.

<<local>>, <<global>>, <<parameter>>. Appended on the far end of a
link.

– sequence number: indicates the time ordering of message sending.
Prefixes message names.

Copyright Joey Paquet, 2000 24

Collaboration Diagrams
• Links can be adorned with the names and direction of the

messages exchanged

• Complex branching such as iteration and alternatives can
be represented using iteration expressions (e.g. *[1 :=
1..n]) and condition clauses (e.g. [x<0]) respectively.

• As for sequence diagrams, stereotypes <<create>> and
<<destroy>> can be used to represent the dynamic creation
and deletion of objects

• Normally used to directly model use cases (reverse
engineering) or as a tool to integrate several sequence
diagrams (forward engineering).

Copyright Joey Paquet, 2000 25

Constr. Collaboration Diagrams
• Set the context for the interaction, e.g. system, subsystem,

operation, class, scenario or use case

• Identify the objects that pay a role in the interaction and
lay them as vertices in a graph

• Specify the links between these objects as edges between
the objects

• Starting with the initiating message, attach message names
to each edge, assigning them incremental sequence
numbers.

• If several sequence diagrams are needed to model different
aspects of a use case, group them in a package, with
meaningful names to differentiate each diagram in the
package

Copyright Joey Paquet, 2000 26

Collaboration diagram example

Copyright Joey Paquet, 2000 27

Part III

Activity Diagrams

Copyright Joey Paquet, 2000 28

Activity Diagrams
• Shows the flow of control from activity to activity
• Activity: an ongoing non-automatic execution

within a state machine
• Activities ultimately result in some action
• Action: a sequence of atomic computations that

result in a change in the state of the system or the
return of a value
– call another operation, send signal, create or

destroy objects, evaluate
expressions/statements

• A collection of vertices and arcs

Copyright Joey Paquet, 2000 29

Example
• Insert figure 19-1

Copyright Joey Paquet, 2000 30

Action and Activity States
• An activity diagram decomposes an activity in

terms of its component activities and actions

• Atomic (lowest level) sub-activities are
represented by action states
– cannot be interrupted, considered to take an

unsignificant amount of time

• Non-atomic (abstract) activities are represented by
activity states
– can be decomposed (as an activity diagram), can be

interrupted

Copyright Joey Paquet, 2000 31

Transitions
• When the action or activity of a state completes,

control passes immediately to the next action or
activity state

• These dependencies, called state transitions, are
represented by a directed line showing the
direction of flow of control

• Execution starts at the start state and continues
indefinitely or until a stop state is reached

• Entry and exit actions can be specified

Copyright Joey Paquet, 2000 32

Branching
• Sequential transitions are common, but most activities

include conditional branching dependent to the system
state

• Branching can be used in activity diagrams, which is
represented by a diamond

• A branch has only one entry point and possibly
several exit points

• Alternate exit transitions are guarded. Guards should
be defined to cover all possibilities and avoid
overlapping

• Iteration can be defined using a branch

Copyright Joey Paquet, 2000 33

Forking and Joining
• Concurrent flows can exist in many situations

• The activation (fork) and synchronization (join) of
parallel flows of control can be represented by
synchronization bars, represented by a thick
horizontal or vertical line

• To each fork with x outgoing transitions
corresponds a join with x incoming transitions

Copyright Joey Paquet, 2000 34

Swimlanes
• Activity states can be partitioned into groups, each

group representing the entity responsible for those
activities

• Such partitions are called swimlanes

• Swimlane names do not need to have a deep
meaning, but normally represent modules,
subsystems or objects

• Activities belong to exactly one swimlane, but
transitions may cross lanes

Copyright Joey Paquet, 2000 35

Example
• Insert figure19-7

Copyright Joey Paquet, 2000 36

Object Flow
• Some activities produce results (objects) that can

be used by or direct the execution other activities

• These can be included in activity diagrams and
linked by dependencies to the activity/action states

Copyright Joey Paquet, 2000 37

Example
• Insert figure 19-8

Copyright Joey Paquet, 2000 38

Uses: Modeling Workflows
• The business process (collaboration of human and

automated systems) can be represented using activity
diagrams
– Establish the focus of the workflow
– Find the business entities that interact in this workflow and elect

them as swimlanes
– Identify the pre and post conditions to the workflow
– Beginning from the start state, identify the activities and actions

pertaining to this workflow
– Collapse out of focus complex action states into activity states
– Identify the transitions that connect these activities consider

branching and fork and join for complex/concurrent activities
– Important or transition-related objects, along with a part of their

state can be rendered in the diagram to ease comprehension

Copyright Joey Paquet, 2000 39

Uses: Modeling Operations
• Activity diagrams are used to convey the behavior

of elements in terms of a sequence of activities

• The most common element to which an activity
diagram is attached is an operation

• Same procedure as for workflows, except that
forks and joins are rarely used in this context

• Used only for complex operations: sometimes an
algorithm is sufficient

Copyright Joey Paquet, 2000 40

Example

Copyright Joey Paquet, 2000 41

Hints and Tips
• As for all other diagrams, an activity

diagram:
– has a focus
– conveys information consistent with its level of

abstraction
– should minimize line crossings

• Activity states can be exploded into activity
diagrams to convey more detailed
information

Copyright Joey Paquet, 2000 42

Part IV

State Machines

and

State Charts

Copyright Joey Paquet, 2000 43

State Machines
• A state machine specifies the sequence of states an object

goes through during its lifetime in response to events,
together with its response to those events

• A state is a typical situation during the lifetime of an
object

• An event is an occurrence of a stimulus that can trigger a
state transition

• A state is rendered as a rectangle with rounded corners and
a transition as a solid directed line

Copyright Joey Paquet, 2000 44

Statechart Diagrams
• A statechart diagram is a state machine

emphasizing the flow of control from state to state
for a single object

• States in a statechart can be either simple states or
composite states

• Statechart diagrams are typically used to model
event-driven (reactive) objects

• Operations and workflows are better rendered
using activity diagrams, which are better suited for
modeling the flow of activities over time

Copyright Joey Paquet, 2000 45

States
• A state is a situation during the lifetime of an object

during which it satisfies some conditions, performs some
activity, or waits for some event

• An object remains in a state for a finite amount of time

• A state has several parts:
– name

– entry/exit actions

– substates (possibly)

• A state machine has one starting state and zero or more
final states. The initial state does not have a trigger event

Copyright Joey Paquet, 2000 46

Transitions
• A transition is a relationship between two states indicating

that an object in the source state will perform certain
actions and enter the target state when a specified event
occurs and specified conditions are satisfied
– source state: state affected by the transition
– trigger event: the event whose reception by the object in the

source state makes the transition eligible to fire
– guard: boolean condition that is evaluated when the trigger event

is received. The transition is fired only if the guard evaluates to
true

– action: operation that is performed when the transition is fired
– target state: state that is active after the completion of the

transition

Copyright Joey Paquet, 2000 47

Modeling the Lifetime of Objects
• Most common purpose for state machines

– Set the context for the state machine, e.g. a class, use case, etc

– Collect neighboring classes and consider those as candidate targets
for actions and guard conditions

– Establish the initial and final states of the object

– Decide on the events to which this object may respond

– starting from the initial state, lay out the states along with the
appropriate transitions.

– Add events and finally actions

– Check that events and actions are supported by the neighboring
classes

– Check for unexpected sequences

Copyright Joey Paquet, 2000 48

Modeling Reactive Objects
• A reactive system is a collection of objects

reacting to events.

• Modeling a the behavior of a reactive object is
about specifying three things:
– the stable states in which that object may live

– the events that trigger a transition between states

– the actions that occur on each state change

Copyright Joey Paquet, 2000 49

Example

Copyright Joey Paquet, 2000 50

Example

Copyright Joey Paquet, 2000 51

Hints and Tips
• As for all other diagrams, a statechart diagram:

– has a focus

– conveys information consistent with its level of
abstraction

– should minimize line crossings

• Is not nested too deeply

• Should not make too much references to its
context

Copyright Joey Paquet, 2000 52

Hints and Tips
• Sequence diagrams and collaboration diagrams

provide a different view on the same information

• For complex systems, no single interaction
diagram can convey all the information about the
system’s dynamic aspects

• Many interaction diagrams must be used to model
the system as a whole, its subsystems, modules,
classes, use cases and collaborations

• Each diagram must focus on its assigned goal

Copyright Joey Paquet, 2000 53

Hints and Tips
• The more diagrams we have, the more abstraction

levels we need for comprehensibility

• Use sequence diagrams to represent the time
ordering of messages in a restricted context e.g.
scenarios

• Use collaboration diagrams to represent the
structural organization of interacting object

• Use complex branching sparingly. It can be
modeled best using activity diagrams.

