DATA TABLES

<u>TRANSIENT RESPONSE DATA</u> <u>Steps 1 to 3 :</u> (a) Values used for the <u>series-RC circuit</u> :

Nominal Value* of R =Ohms

Nominal Value of $C = 0.1 \,\mu\text{F}$

'Theoretical' Time Constant $\tau = RC = \dots$

*Neatly draw the circuit of the R –network which you used, to obtain the R value, <u>in the space below</u>.

(b) Values used for the series-RL circuit :

Nominal Value* of R =Ohms

Nominal Value of L = 0.02 H

'Theoretical' Time Constant $\tau = L/R = \dots$

* Neatly draw the circuit of the R –network which you used , to obtain the R value, in the space below.

Step 4 : Values used for the series-RLC circuit :

(c)

$$R_{c}(nominal) = 2\sqrt{0.02/0.1\mu} = 894.43 \Omega$$

Value of R used for 'OD' response, $R_{od} = \dots$...Ohms

Value of R used for 'CD' response, $R_{cd} = \dots$...Ohms

Value of R used for 'UD' response, $R_{ud} = \dots$...Ohms

TA Signature :

[Make sure to also obtain your TA's signature on the various time- and frequency- response printouts]

FREQUENCY RESPONSE DATA

<u>Step 5 :</u>	Tables for Frequency Response Data (RC & RLC ci	rcuits)
	Use a V_s magnitude in the 1 to 3 Volts RMS range	
	Series RC circuit	Series RLC

Attempt to keep Vs at a constant magnitude

Series RLC circuit Attempt to keep Vs at a constant magnitude

f kHz	W Radians/sec	Input V _s Volts RMS	Output V _c Volts RMS	$M(db)=20 \log(V_c/V_s)$	f kHz	W Radians/sec	Input V _s Volts RMS	Output V _R Volts RMS	$M(db)=20 \log(V_c/V_s)$
0.1	628.3		Volue Talle		0.1	628.3			
10					10				

TA Signature :

<u>DATA FOR Series-RLC RESONANT CIRCUIT</u>, (Step 7) [First locate the frequency at which V_c is a maximum and then 'descend' on both sides of the peak frequency. This will ensure proper plotting of the 'bandpass' curve] Use a V_s magnitude in the 1 to 3 Volts RMS range

	f kHz	$\begin{array}{c} \text{Input} \\ V_{s} \\ \text{Volts RMS} \end{array}$	$\begin{array}{c} \text{Output} \\ V_{\text{R}} \\ \text{Volts RMS} \end{array}$	$\frac{M(db)}{20 \log \frac{V_c}{V_s}}$
	1			
	1.5			
	2			
	2.5			
First locate the frequency	3			
reaches a maximum and	-			
enter the value here	4			
	4.5			
	5			
	5.5			
	6			

Attempt to maintain Vs at a constant level

TA Signature :