LAB RECORD (Weight: 30 \%)

DC Circuit

From Step 2: Reference values used :
$\mathrm{R}_{\mathrm{L}} \approx$ \qquad Ohms , V_{s} knob at \approx \qquad .Turns, I_{s} knob at \approx \qquad Turns.

From Step 3: DC Currents:
$\mathrm{I}_{1}=$ \qquad $\mathrm{mA}, \quad \mathrm{I}_{2}=$ \qquad $\mathrm{mA}, \quad \mathrm{I}_{3}=$ \qquad mA.

From Step 4: DC Node Voltages:
$\mathrm{V}_{\mathrm{A}}=$ \qquad Volts, $\mathrm{V}_{\mathrm{E}}=$ \qquad Volts, $\mathrm{V}_{\mathrm{C}}=$ \qquad Volts.

AC Circuit [Steps 6 to 11]

Values of elements used [The RLC meter located on the Printer table can be used to measure the exact values of L and C . Use the available measurement frequency of 1 kHz) :
$\mathbf{R}=$ \qquad $\mathrm{L}=$
C $=$ \qquad
[Make sure to also obtain your TA's signature on the printouts of Step 10]

TA Signature: \qquad

LAB REPORT (Weight: 50\%)

DC Results (See Step 5)
(a) KCL Verification :
(b) KVL Verification :
(c) Calculation of $\mathrm{I}_{\underline{s}}$:
(d) Power Balance:

Total Power Dissipated $\mathrm{P}_{\text {diss }}=$

Total Power Delivered $\mathrm{P}_{\text {del }}=$
AC Results
(Step 11)
Amplitude Ratio $\mathrm{A}_{\mathrm{v}}=$

Amplitude Ratio $\mathrm{A}_{\mathrm{v}}=$
Phase Shift $\phi=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$................................ \qquad

Attach a final page to the report, summarizing what was learnt in the experiment and adding any comments that you may wish to make about it.

