LAB RECORD (Weight: 30 %)

<u>**PART A</u>** [Step 3] : Draw the series-parallel circuit, which you have selected in the space within the dotted outline showing all resistance values clearly. <u>Calculate</u> the theoretical value of R_{in} for your network., ie R_{in} (calc). This will be used as a 'reference' value.</u>

[Neatly draw your selected circuit within the block and indicate all R values used]

Measurements [Steps 1 to 5] :

R_{in} value (from current/voltage measurements)

 $R_{in} (expt) = V_{in}/I_{in} = \dots \Omega.$

<u>Ohmmeter</u>-measured Value of $R_{in}(OM) = \dots \Omega$.

<u>PART B</u>: <u>TEC & MPT</u> [Refer to Figure 2.7]

Step 7 : Open-Circuit voltage : $V_{ab}(oc) = V_T = \dots$ Volts

Step 8 : Dial reading when $V_L{=}\,0.5~V_T, \qquad N =$ & the corresponding value of $R_L{=}$ Ohms { \underline{or}

Load Voltage $V_L = \dots$ Volts , with $R_L = \dots$ Ohms }

TA Signature:

(LAB RECORD Continued)

Maximum Power Transfer Theorem Verification : [Step 9]

Nominal Load Resistor (R_L) Values used: [Note: $R_a < R_b < R_T$ and $R_d > R_c > R_T$]

[$R_L = R_T$ when $V_L = V_T/2$]

 $R_a = \dots \dots \Omega \ , \qquad R_b = \dots \dots \Omega \ ,$

 $R_c = \dots \qquad \Omega \;, \qquad R_d = \dots \qquad \Omega \;,$

Load Resistance	Load Voltage	$P_{\rm L} = (V_{\rm L})^2 / R_{\rm L}$
$R_L \Omega$	V _L volts	W or mW
R _a =		
R _b =		
R_L (for $V_T/2$)		
R _c =		
R _d =		

TA signature :

LAB REPORT (Weight: 50%)

<u>PART (A)</u> : <u>ERROR ANALYSIS</u>: Calculate the error observed in the experimentally determined $R_{in}(Expt)$ and in the ohmmeter-measured value $R_{in}(OM)$ with respect to the theoretical value $R_{in}(calc)$. Comment on the results.

PART (B) :TEC & MPT :

(a) Calculate the value of V_T and R_T from the data of Steps 7 & 8 **Draw the TEC in the space provided below**.

(b) The maximum power available from the TEC is $P_{max} = \dots W$

(c) Plot P_L against the five selected values of R_L in the co-ordinate space provided below :

DISCUSSION & CONCLUSION: [Discuss possible reasons for any differences observed between theory and the experimental results. Express, **in your own words**, what you learnt from this experiment.]

Please remember to follow all report-format and submission rules given earlier !
