LAB RECORD (Weight: 30 \%)

Phasor relation \& Z determination: Figure 3.6, Steps 1 to 3

$\mathrm{R}=$	$\mathrm{R}_{\mathrm{p}}=\ldots \ldots \ldots \ldots \ldots . . \Omega$.
	Nominal value of $\mathrm{C}=220 \mathrm{nF}$,
	Measured value of C on RLC -meter $=\ldots \ldots \ldots \ldots . \mathrm{nF} @ 1 \mathrm{kHz}$

From the printout

$$
\text { Ch1 voltage } \mathrm{V}_{1}=\ldots \ldots \ldots \ldots \ldots . . . \text {. }
$$

Ch2 voltage $\mathrm{V}_{2}=$ \qquad Volts RMS

Ch1 Frequency $\mathrm{f}=$ \qquad Hz

Time-shift between $\mathrm{V}_{1} \& \mathrm{~V}_{2}, \quad \Delta \mathrm{t}=$ \qquad
Figures 3.9, Steps 4 to 6:
RLC-meter measured values (all @ 1kHz):

$$
\mathrm{r}=
$$

\qquad $\Omega \mathrm{L}=$ \qquad mH,
$C=$ \qquad Ω

Resonant frequency $f_{0} \approx$ \qquad Hz

From the printout at frequency f_{1} :
Ch1 voltage $\mathrm{V}_{1}=$ \qquad .Volts RMS

Ch2 voltage $V_{2}=$ \qquad .Volts RMS

Ch1 Frequency $f=f_{1}=$ \qquad .Hz

Time-shift between $V_{1} \& V_{2}, \Delta t=$ \qquad
From the printout at frequency f_{2} :
Ch1 voltage $\mathrm{V}_{1}=$ \qquad Volts RMS

Ch2 voltage $\mathrm{V}_{2}=$ \qquad .Volts RMS

Ch1 Frequency $f=f_{2}=$ \qquad Hz

Time-shift between $V_{1} \& V_{2}, \Delta t=$. \qquad . s

TA signature:

Figure 3.12, Step 7 :

From the printout at frequency $f=\ldots \ldots \ldots . . \mathrm{Hz}$

> Ch1 voltage $V_{1}=\ldots \ldots \ldots \ldots \ldots .$. Volts RMS
> Ch2 voltage $V_{2}=\ldots \ldots \ldots \ldots .$. Volts RMS
> Ch1 Frequency $f=\ldots \ldots \ldots \ldots . . \mathrm{Hz}$

Time-shift between $\mathrm{V}_{1} \& \mathrm{~V}_{2}, \Delta \mathrm{t}=\ldots \ldots \ldots \ldots . . \mu \mathrm{m}$

TA signature:

LAB REPORT (Weight: 60\%)

Phasor relations :

(a)From the printout data of Step 3 , draw the voltage phasors V_{1}, V_{2} and the current phasor I on the complex co-ordinate plane below. Then draw the phasor $\mathrm{I}_{\mathrm{p}}=\mathrm{V}_{1} / \mathrm{R}_{\mathrm{p}}$.Graphically obtain V_{c} by using the KVL phasor relation $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{1}-\mathrm{V}_{2}$. [Either draw the diagram to 'scale' or use complex-number algebra* on the phasors you have drawn.[* show calculations by the side of the diagram]

(b)From the printout data of Step 6, draw the phasors V_{1} and I on the complex co-ordinate plane below for each of the two frequencies used.

Impedance determination: ALL EXPERIMENTAL IMPEDANCE DETERMINATIONS SHOULD USE RMS VOLTAGE AND TIME-SHIFT (cursor0 DATA FROM THE PRINTOUTS
(a) From the data of Step 3,

Determined value of $\mathrm{Z}_{\mathrm{RC}}=$ \qquad \angle. Ω

Magnitude Error between determined and nominal values (referred to nominal)
$=$
\%
Angle Error between determined and nominal values (referred to nominal)
\qquad
Comments:
(b) (i) From the data of Step 6,

Sample frequency $\mathrm{f}_{1}=$ \qquad
Determined value of $\mathrm{Z}\left(\omega_{1}\right)=\ldots \ldots \ldots . \angle$. Ω

Magnitude Error between determined and nominal values (referred to nominal)
$=$ \qquad \%

Angle Error between determined and nominal values (referred to nominal)
$=$
\%
(ii) From the data of Step 6,

Sample frequency $\mathrm{f}_{2}=$ \qquad Hz

Determined value of $Z\left(\omega_{2}\right)=$ \qquad \angle Ω

Magnitude Error between determined and nominal values (referred to nominal)
= ... \%

Angle Error between determined and nominal values (referred to nominal)
= .. \%

Comments:
(c) From the data of Step 7 :

Frequency f = \qquad
Determined value of $Z\left(\omega_{2}\right)=$ Ω

Magnitude Error between determined and nominal values (referred to nominal)
\qquad \%

Angle Error between determined and nominal values (referred to nominal)

$$
=\ldots \ldots . .
$$

Comments:

DISCUSSION \& CONCLUSION: [Discuss possible reasons for any differences observed between the experimental results and the 'theoretically' predicted ones. Express, in your own words, what you learned from this experiment.]

