## LAB RECORD (Weight: 30 %) Phasor relation & Z determination : Figure 3.6, Steps 1 to 3

| R =                                                                   | $\dots, \Omega, \qquad R_p = \dots, \Omega.$                                            |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
|                                                                       | Nominal value of $C = 220 \text{ nF}$ ,<br>Measured value of C on RLC-meter = nF @ 1kHz |  |  |  |
| From the printout                                                     |                                                                                         |  |  |  |
|                                                                       | Ch1 voltage $V_1 = \dots$ Volts RMS                                                     |  |  |  |
|                                                                       | Ch2 voltage $V_2 = \dots$ Volts RMS                                                     |  |  |  |
|                                                                       | Ch1 Frequency $f = \dots Hz$                                                            |  |  |  |
|                                                                       | Time-shift between $V_1 \& V_2$ , $\Delta t = \dots \mu s$                              |  |  |  |
| Figures 3.9, Steps 4 to 6:<br>RLC-meter measured values (all @ 1kHz): |                                                                                         |  |  |  |
| r =                                                                   | $\dots \Omega  L = \dots \dots mH,  C = \dots \dots nF,  R = \dots \dots \Omega$        |  |  |  |
| Resonant frequency $f_o \approx \dots Hz$                             |                                                                                         |  |  |  |
| From the printout a                                                   | t <u>frequency</u> $f_1$ :<br>Ch1 voltage $V_1 = \dots$ Volts RMS                       |  |  |  |
|                                                                       | Ch2 voltage $V_2 = \dots$ . Volts RMS                                                   |  |  |  |
|                                                                       | Ch1 Frequency $f = f_1 = \dots$ Hz                                                      |  |  |  |
|                                                                       | Time-shift between $V_1 \& V_2$ , $\Delta t = \dots \mu s$                              |  |  |  |
| From the printout a                                                   | t <u>frequency</u> $f_2$ :<br>Ch1 voltage $V_1 = \dots$ Volts RMS                       |  |  |  |
|                                                                       | Ch2 voltage $V_2 = \dots$ Volts RMS                                                     |  |  |  |
|                                                                       | Ch1 Frequency $f = f_2 = \dots Hz$                                                      |  |  |  |
|                                                                       | Time-shift between $V_1 \& V_2$ , $\Delta t = \dots \mu s$                              |  |  |  |

TA signature:....

### Figure 3.12 , Step 7 :

From the printout at **frequency** f = .....Hz

| Ch1 voltage $V_1 = \dots$ Volts RMS                        |
|------------------------------------------------------------|
| Ch2 voltage $V_2 = \dots$ . Volts RMS                      |
| Ch1 Frequency $f = \dots Hz$                               |
| Time-shift between $V_1 \& V_2$ , $\Delta t = \dots \mu s$ |

TA signature:....

## LAB REPORT (Weight: 60%)

#### **Phasor relations :**

(a)From the printout data of Step 3, draw the voltage phasors  $V_1$ ,  $V_2$  and the current phasor I on the complex co-ordinate plane below. Then draw the phasor  $I_p=V_1/R_p$ . Graphically obtain  $V_c$  by using the KVL phasor relation  $V_c = V_1-V_2$ . [Either draw the diagram to 'scale' or use complex-number algebra\* on the phasors you have drawn.[\* show calculations by the side of the diagram]



(b)From the printout data of Step 6, draw the phasors  $V_1$  and I on the complex co-ordinate plane below for each of the two frequencies used.



# Impedance determination:ALL EXPERIMENTAL IMPEDANCE DETERMINATIONS SHOULDUSERMS VOLTAGE AND TIME-SHIFT (cursor0 DATA FROM THE PRINTOUTS

| (a) | From the data of Step 3,                                                     |        |
|-----|------------------------------------------------------------------------------|--------|
|     | Determined value of $Z_{RC} = \dots \square \square \square \square \square$ |        |
|     | Magnitude Error between determined and nominal values (referred to nom       | ninal) |
|     | Angle Error between determined and nominal values (referred to nominal)      | %0     |
|     | =                                                                            | %      |
|     | <u>Comments</u> :                                                            |        |
|     |                                                                              |        |
|     |                                                                              |        |
|     |                                                                              |        |

| (b) | (i) | From the data of Step 6,                                                    |
|-----|-----|-----------------------------------------------------------------------------|
|     |     | Sample frequency $f_1 = \dots Hz$                                           |
|     |     | Determined value of $Z(\omega_1) = \dots \land \Delta$                      |
|     |     | Magnitude Error between determined and nominal values (referred to nominal) |
|     |     | 0/                                                                          |
|     |     | Angle Error between determined and nominal values (referred to nominal)     |
|     |     |                                                                             |
|     |     | =%                                                                          |
|     | (1  | 1) From the data of Step 6,<br>Sample frequency $f_{1} = - H_{2}$           |
|     |     | Sample frequency $T_2 = \dots T_2$                                          |
|     |     | Determined value of $Z(\omega_2) = \dots \land \Delta$                      |
|     |     | Magnitude Error between determined and nominal values (referred to nominal) |
|     |     |                                                                             |
|     |     | Angle Error between determined and nominal values (referred to nominal)     |
|     |     | 0/                                                                          |
|     |     |                                                                             |

Comments:

(c) From the data of Step 7 :

Frequency  $f = \dots$ 

Determined value of  $Z(\omega_2) = \dots \square \square \square$ 

Magnitude Error between determined and nominal values (referred to nominal)

= ..... %

Angle Error between determined and nominal values (referred to nominal)

= ..... %

#### Comments:

**DISCUSSION & CONCLUSION:** [Discuss possible reasons for any differences observed between the experimental results and the 'theoretically' predicted ones. Express, in your own words, what you learned from this experiment. ]