\qquad ID\# \qquad Lab Section: \qquad

PRE-LAB [To be completed and submitted before performing Lab \# 3]

(Weight: 10\%)
(1) A sinusoidal voltage signal has the peak-to-peak value $V_{p p}$ and a frequency f Hz . On an oscilloscope display, the above signal appears to be 'time-shifted' by Δt sec with respect to another signal having the same frequency .

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{pp}}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \text { Volts, } \mathrm{f}= \\
& \text { Hz., } \\
& \Delta t=\text {. } \\
& \text {.sec }
\end{aligned}
$$

For your choice of $V_{p p}$, f and Δt determine
(a) the RMS value $\mathrm{V}_{\text {RMS }}=$ \qquad Volts
(b) the Period $\mathrm{T}=$ \qquad sec
(c) the radian frequency $\omega=$ \qquad .radians/sec
(d) the 'phase-shift' between the two signals is $\theta=$ \qquad degrees
(2): For the circuit shown $R_{1}=500 \Omega$ and $R_{2}=1000 \Omega$. The components A and B (within the dotted outlines) may be capacitors (C)in the range of $100-300 \mathrm{nF}$ or inductors (L) in the range of $20-50 \mathrm{mH}$. The frequency of operation is in the range of $2000-5000 \mathrm{~Hz}$. and $\mathrm{V}_{\mathrm{ab}}=2$ volts RMS.

Indicate the (L and/or C) component of your choice for A \& B within the dotted outlines (with values) and the frequency $\mathrm{f}=$ \qquad Hz. and determine, by calculation,
(a) the impedance (in polar form) connected to the source, $\mathrm{Z}_{\mathrm{ab}}==\ldots . \angle \ldots$, Ohms
(b) the phasor current $\mathrm{I}=$ \qquad A/mA
(c) sketch the phasor diagram showing I and V , with V_{ab} as reference.
[Hint: Obtain V using KVL: $\mathrm{V}=\mathrm{V}_{\mathrm{ab}}-\mathrm{IR}_{1}$]
Show all calculations below (neatly!):
\qquad ID\# \qquad
\qquad
(3) Assume that you have constructed the circuit setup of Figure 3.9, with frequency f adjusted to 4 kHz . and that the measurements obtained from the printout (Step 6)were as follows: :

$\mathrm{V}_{1}=\ldots \ldots \ldots \ldots \ldots .$. volts	[choose between 4 \& 6 V RMS]
$\mathrm{V}_{2}=\ldots \ldots \ldots \mathrm{volts}$	[choose between 500 mV \& 800 mV RMS]
	with V_{2} lagging V_{1}.

and the timeshift between the two waveforms is

$$
\Delta \mathrm{t}=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{s} \quad[\underline{\text { choose }} \text { between } 20 \& 40 \mu \mathrm{~s}]
$$

Determine :

(a) the magnitude of the unknown impedance $\mathrm{Z}=(\ldots .$. ... $\mathrm{j} \ldots . .$.) $=\ldots . . \ldots$ from the hypothetical values assumed above.
(b)the 'nature' of the impedance: Inductive / Capacitive (Circle the answer)

Show all calculations below (neatly!) :

