PRE-LAB [To be completed and submitted before performing Lab # 3] (Weight: 10%)

(1) A sinusoidal voltage signal has the peak-to-peak value V_{pp} and a frequency f Hz. On an oscilloscope display, the above signal appears to be 'time-shifted' by Δt sec with respect to another signal having the same frequency.

> V_{pp} =..... Volts, f =Hz., $\Delta t = \dots$ sec

For <u>your choice</u> of V_{pp} , f and Δt determine

(a) the RMS value $V_{RMS} = \dots$ Volts

(b) the Period $T = \dots$ sec

- (c) the radian frequency $\omega = \dots$ radians/sec
- (d) the 'phase-shift' between the two signals is $\theta = \dots$ degrees

(2): For the circuit shown $R_1 = 500\Omega$ and $R_2 = 1000\Omega$. The components A and B (within the dotted outlines) may be capacitors (C)in the range of 100-300 nF or inductors (L) in the range of 20-50 mH. The frequency of operation is in the range of 2000–5000Hz. and $V_{ab} = 2$ volts RMS.

Indicate the (L and/or C) component of **your choice** for A & B within the dotted outlines (with values) and the frequency $f = \dots Hz$. and determine, by calculation,

- (a) the impedance (in polar form) connected to the source, $Z_{ab} = -... \angle ...$, Ohms
- (b) the phasor current $I = \dots A/mA$
- (c) sketch the phasor diagram showing I and V, with V_{ab} as reference. [<u>Hint:</u> Obtain V using KVL: $V = V_{ab} - IR_1$] Show all calculations below (neatly!) :

continued overleaf >>>>

(3) Assume that you have constructed the circuit setup of Figure 3.9, with frequency f adjusted to 4kHz. and that the measurements obtained from the printout (Step 6)were as follows: :

$V_1 = \dots volts$	[choose between 4 & 6 V RMS]
$V_2 = \dots$ volts	$\frac{[\textbf{choose}]{} between 500mV\& 800mV RMS]}{with V_2 lagging V_1.}$

and the timeshift between the two waveforms is

 $\Delta t = \dots \mu s$ [**choose** between 20 & 40 μ s]

Determine :

- (a) the magnitude of the unknown impedance $Z = (\dots, j, \dots) = \dots \angle \dots$ from the hypothetical values assumed above.
- (b)the 'nature' of the impedance : Inductive / Capacitive (Circle the answer)

Show all calculations below (neatly!) :
