LAB RECORD: (Weight: 30 %) **PART (A):** TRANSFORMER TEST DATA: Frequency $f \approx 60$ Hz.[Steps 1 & 2]:

> Primary voltage $V_p = \dots$...Volts ; Secondary voltage $V_s = \dots$.Volts Primary current $I_p = \dots$.Amp ; Secondary current $I_s = \dots$.Amp Wattmeter readings : $P_{in} = \dots$.Watts ; $P_{out} = \dots$.Watts Δt (from cursor data on CT/VT waveforms) =sec.

(b) Load $Z_L = R + j\omega L \approx 43.5 + j75.4 \Omega$ [ie R set at 43.5 Ω & L $\approx 0.2H$, f ≈ 60 Hz] [Step 6]

Primary voltage $V_p = \dots$...Volts ; Secondary voltage $V_s = \dots$...Volts Primary current $I_p = \dots$...Amp ; Secondary current $I_s = \dots$...Amp Wattmeter readings : $P_{in} = \dots$...Watts ; $P_{out} = \dots$...Watts Δt (from cursor data on CT/VT waveforms) =sec.

<u>PART (B)</u>: <u>THREE-PHASE POWER TEST DATA</u> : Frequency = $\sim 60.$ Hz. Readings for Vph ≈ 60 VoltsRMS (ie VT output on CH1 ≈ 3 VoltsRMS) [Steps 7 to 10]

LOAD	VT Output Volts RMS	CT Output Volts RMS	Cursor Δt for Phase shift sec or msec	W ₁ Watts	W ₂ Watts
R					
L					
С					
Series RL					
Series RL // C					

TA Signature

LAB REPORT: Weight: 50 %)

PART (A): (a) Turns Ratio

Specified transformer ratio $\mathbf{n} = 208/120 = \mathbf{1.733}$

Experimental value(from voltage measurements) **n** =

Error:%

(b) For the load $Z_L (= Z_s) = R + j\omega L \approx 43.5 + j75.4 \Omega$, Secondary impedance magnitude Z_s (from voltage & current measurements)

 $Z_s = \dots$ Impedance angle (from cursor Δt) θ =degrees Primary impedance magnitude Zp (from voltage & current measurements)

$\label{eq:constraint} \boldsymbol{Z}_p = \\ \underline{\text{Verify that}} \boldsymbol{Z}_p = \boldsymbol{n}^2 \boldsymbol{Z}_s:$	
(c) <u>Voltage Regulation:</u> % Reg (R load % Reg (RL lo	ad) =
(d) <u>Power Efficiency</u> (from Wattmeter dat	ta): $\eta(R \text{ load}) = \dots$

 $\eta(\kappa \text{ load}) =$ η (RL load) =

PART (B): Average Power P & Power Factor PF (RL and RL//C Loads)

LOAD	P _{theory} Watts	P _{expt} Watts	% Error in P	PF _{theory}	PF _{expt}	% Error in PF
Series RL						
Series RL // C						

1: $P_{\text{theory}} = 3 I^2 \text{ReZ}$ and $PF = \cos[\tan^{-1}(ImZ/\text{ReZ})]$ $2: P_{expt} = W1 \pm W2$ and $PF_{expt} = \cos (360 f \Delta t)^{\circ}$

DISCUSSION & CONCLUSION: [Discuss possible reasons for any differences observed between theory and the experimental results. Express, in your own words, what you learned from this experiment.]