

Department of Electrical and Computer Engineering

ELEC 442 Discrete-Time Signal Processing

Lab Manual

William E. Lynch and Maria Amer

June 2019

Table of Contents
Submission Instructions .. 1

Lab 1. Linear Constant Coefficient Difference Equations (LCCDE) ... 2

Objectives ... 2

Introduction ... 2

LTI System as a Filter ... 3

The Impulse Response .. 3

Finite Impulse Response (FIR) Systems ... 3

Infinite Impulse Response (IIR) Systems ... 4

Solution of an LCCDE Using MATLAB ... 4

Lab Problems .. 6

Lab 2. The Fourier Transform and the Z-Transform ... 10

Objectives ... 10

Signal Acquisition ... 10

The Fourier Transform: The Spectrum of a Signal ... 11

Lab Problems I .. 14

The Z-Transform ... 14

Lab Problems II... 15

The Frequency Response from the Z-Transform .. 18

Lab Problems III ... 22

Lab 3. The Sampling Theorem .. 24

Objectives ... 24

Sampling Issues .. 24

Periodic Sampling ... 25

Nyquist Theorem .. 27

Reconstruction .. 28

Lab Problems .. 31

Lab 4. Multirate Digital Signal Processing ... 34

Objectives ... 34

Key Issues ... 34

Downsampling and Decimation .. 35

Upsampling and Interpolation... 39

Sampling Rate Conversion ... 41

Lab Problems .. 42

Lab 5. Signal Restoration and Filter Design ... 48

Objectives ... 48

Signal Restoration ... 48

Objective Quality Measurement ... 48

MATLAB’s Filter Designer tool .. 49

Lab Problems .. 49

References ... 53

Acknowledgment .. 53

1 | P a g e

Submission Instructions
• For each lab problem, create MATLAB script files.

• Include your name and ID as comments in each script file.

• For each lab problem, submit as part of the written lab report, the script file and any

required plots.

• It is suggested to save the script file under meaningful name, such as Lab1_Prob1.m.

2 | P a g e

Lab 1. Linear Constant Coefficient Difference
Equations (LCCDE)

Objectives
• To learn how to use MATLAB to generate the output of the LTI systems that are

represented using Linear Constant Coefficient Difference Equation (LCCDE).

Introduction
Linear Constant Coefficient Difference Equation (LCCDE) is the equation that describes the

relationship between the input and the output of a discrete time LTI system. It describes the

operation of the system in the time domain and provides a method for computing the response of

a system 𝑦𝑦[𝑛𝑛], to an arbitrary input 𝑥𝑥[𝑛𝑛]. An Nth-order LCCDE is expressed as

Equation 1-1:

�𝑎𝑎𝑘𝑘𝑦𝑦[𝑛𝑛 − 𝑘𝑘]
𝑁𝑁

𝑘𝑘=0

= � 𝑏𝑏𝑚𝑚𝑥𝑥[𝑛𝑛 −𝑚𝑚]
𝑀𝑀

𝑚𝑚=0

𝑦𝑦(𝑛𝑛) =
1
𝑎𝑎0
�� 𝑏𝑏𝑚𝑚𝑥𝑥[𝑛𝑛 − 𝑚𝑚]
𝑀𝑀

𝑚𝑚=0

−�𝑎𝑎𝑘𝑘𝑦𝑦[𝑛𝑛 − 𝑘𝑘]
𝑁𝑁

𝑘𝑘=1

�

With the initial conditions 𝑦𝑦(– 1) = 𝑦𝑦1, 𝑦𝑦(– 2) = 𝑦𝑦2, … , 𝑦𝑦(–𝑁𝑁) = 𝑦𝑦𝑁𝑁 and the coefficients

𝑎𝑎𝑘𝑘 (𝑎𝑎0 ≠ 0) and 𝑏𝑏𝑚𝑚 as constants that define the system. The relation in Equation 1-1, is a general

linear relation between 𝑥𝑥[𝑛𝑛], the input, and 𝑦𝑦[𝑛𝑛], the output of the discrete time LTI system. We

also say that 𝑁𝑁 is the degree of the system. An example is the following difference equation

Equation 1-2:

�𝑎𝑎𝑘𝑘𝑦𝑦[𝑛𝑛 − 𝑘𝑘]
1

𝑘𝑘=0

= � 𝑏𝑏𝑚𝑚𝑥𝑥[𝑛𝑛 − 𝑚𝑚] ,𝑎𝑎0 = 1,𝑎𝑎1 = −2, 𝑏𝑏0 = 1
0

𝑚𝑚=0

𝑦𝑦[𝑛𝑛] − 2𝑦𝑦[𝑛𝑛 − 1] = 𝑥𝑥[𝑛𝑛]

3 | P a g e

where 𝑁𝑁 (the order of the discrete difference equation) here is 1. Thus, it is a first-order difference

equation.

If the difference equation has one or more terms 𝑎𝑎𝑘𝑘 that are nonzero for 𝑘𝑘 > 0, the difference

equation is said to be recursive. On the other hand, if all of the coefficients 𝑎𝑎𝑘𝑘 ,𝑘𝑘 > 0 are equal to

zero, the difference equation is said to be non-recursive [1][2].

LTI System as a Filter
A given discrete time LTI system that has been designed to achieve a particular purpose or perform

a given operation, such as frequency selection or attenuation, is called a Filter. Such an LTR filter

takes an input signal and produces an output signal. The relationship between the input and the

output can be described using the LCCDE as in Equation 1-1. An LTI filter can be described also

by its impulse response ℎ[𝑛𝑛] or by its system function, also called transfer function, 𝐻𝐻(𝑧𝑧) =

∑ ℎ[𝑛𝑛]𝑧𝑧−𝑛𝑛∞
𝑛𝑛=−∞ . LTI filters can be classified into finite impulse response (FIR) filters and infinite

impulse response (IIR) filters according to their impulse responses. The definitions of FIR and IIR

filters will be explained below.

The Impulse Response
The impulse response is the output of a discrete time LTI system when the input is an impulse

signal 𝛿𝛿[𝑛𝑛]. We call the output, 𝑦𝑦[𝑛𝑛], as ℎ[𝑛𝑛] when the input 𝑥𝑥[𝑛𝑛] is 𝛿𝛿[𝑛𝑛]. This is shown in

Figure 1-1.

Figure 1-1: An LTI system can be classified, according to its impulse response, into an FIR or IIR system.

Finite Impulse Response (FIR) Systems
If the impulse response of an LTI system is of finite duration, the system is said to be a finite

impulse response (FIR) system (filter). It is also called a non-recursive system because the output

samples can be computed using only the current and previous input samples. An FIR filter can be

represented by the following difference equation

4 | P a g e

Equation 1-3:

𝑦𝑦[𝑛𝑛] = � 𝑏𝑏𝑚𝑚𝑥𝑥[𝑛𝑛 − 𝑚𝑚]
𝑀𝑀

𝑚𝑚=0

The output of an FIR filter, like other LTI systems, can also be computed using the convolution

operation as follow

Equation 1-4:

𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] ∗ ℎ[𝑛𝑛] = � ℎ[𝑚𝑚]𝑥𝑥[𝑛𝑛 − 𝑚𝑚]
∞

𝑚𝑚=−∞

= � ℎ[𝑚𝑚]𝑥𝑥[𝑛𝑛 −𝑚𝑚]
𝑀𝑀

𝑚𝑚=0

which is equivalent to the difference equation (Equation 1-3) in this case by considering 𝑏𝑏𝑚𝑚 as

ℎ[𝑚𝑚].

Infinite Impulse Response (IIR) Systems
If the impulse response of an LTI system is of infinite duration, the system is said to be an infinite

impulse response (IIR) system (filter). It is also called a recursive system because it produces

output samples based on the current and possibly previous input samples and the previous values

of its own output. It should be noted that if the impulse response is absolutely summable, the filter

will be stable. An IIR filter can be represented by the difference equation (Equation 1-1).

Solution of an LCCDE Using MATLAB
The MATLAB built-in function filter can be used to compute the response of LTI systems

that are represented using LCCDE. The filter function with the following syntax [3]

y = filter(b, a, x)

filters the input data x using a rational transfer function defined by the numerator and denominator

coefficients b and a (see Equation 1-1). It should be noted that the output signal generated from

filter function has same length as the input signal.

The MATLAB built-in function conv can also be used to compute the response of LTI systems

with impulse response h as follow [3] y = conv(x, h)

5 | P a g e

The length of the output signal using the above regular convolution will be as follow

length(x) + length(h) - 1

Example 1: Find the impulse response for a causal LTI system whose input x[n] and output y[n]

are related by the difference equation

Equation 1-5:

𝑦𝑦[𝑛𝑛] −
1
2
𝑦𝑦[𝑛𝑛 − 1] = 𝑥𝑥[𝑛𝑛]

Solution: This is a recursive equation, and the system is causal LTI. So, the initial rest condition

can be applied (𝑦𝑦[𝑛𝑛] = 0 for all 𝑛𝑛 < 0). The input signal is 𝑥𝑥[𝑛𝑛] = 𝛿𝛿[𝑛𝑛], so we can compute 𝑦𝑦[𝑛𝑛]

for 𝑛𝑛 ≥ 0 as follows

Equation 1-6:

𝑦𝑦[0] = 𝑥𝑥[0] +
1
2
𝑦𝑦[−1] = 1

𝑦𝑦[1] = 𝑥𝑥[1] +
1
2
𝑦𝑦[0] =

1
2

𝑦𝑦[2] = 𝑥𝑥[2] +
1
2
𝑦𝑦[1] = �

1
2
�
2

𝑦𝑦[3] = 𝑥𝑥[3] +
1
2
𝑦𝑦[2] = �

1
2
�
3

and so on.

Thus, the solution can be written as

Equation 1-7:

𝑦𝑦[𝑛𝑛] = ℎ[𝑛𝑛] = �
1
2
�
𝑛𝑛
𝑢𝑢[𝑛𝑛]

The impulse response ℎ[𝑛𝑛] is of infinite duration, so the system is infinite impulse response (IIR).

Now we want to verify this using filter function in MATLAB. In order to obtain and plot impulse

response of the system, we can write the code below:

a = [1 -1/2]; % denominator coefficients (a) according to LCCDE
b = [1]; %numerator coefficients (b) according to LCCDE
n = (-50 : 1 : 50)'; %time interval
impulse = n == 0; %a unit impulse signal

6 | P a g e

subplot(1, 2, 1);
stem(n, impulse);
title('Impulse Signal');
xlabel('n');
ylabel('\delta[n]');
y = filter(b, a, impulse); %y will be the impulse response of the system
subplot(1, 2, 2);
stem(n, y);
title('Impulse Response');
xlabel('n');
ylabel('y[n]');

Figure 1-2 shows the impulse response of the system which is a decreasing exponential function

and is the same as the solution we obtained above.

Figure 1-2: Unit Impulse (left) and Impulse Response of the system (right)

Lab Problems
 Problem 1.

(a) Consider a causal LTI system whose input 𝑥𝑥[𝑛𝑛] and output 𝑦𝑦[𝑛𝑛] are related by the LCCDE

Equation 1-8: 𝒚𝒚[𝒏𝒏] = 𝟏𝟏
𝟒𝟒
𝒚𝒚[𝒏𝒏 − 𝟏𝟏] + 𝒙𝒙[𝒏𝒏]

Determine the impulse response ℎ[𝑛𝑛] and then determine 𝑦𝑦[𝑛𝑛] for 𝑥𝑥[𝑛𝑛] = 𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 10].

(b) Let 0 ≤ 𝑛𝑛 ≤ 50. Use MATLAB conv (convolution) function to find the output 𝑦𝑦[𝑛𝑛] from

part (a). Hint: If we want to use conv function we need to know the impulse response of the

7 | P a g e

system. Here we can use impz function (see MATLAB help [3]) or we can use filter

function with the impulse as its input.

(c) Again let 0 ≤ 𝑛𝑛 ≤ 50. Use MATLAB filter command to find the output 𝑦𝑦[𝑛𝑛] from part

(a). Note: plot the input signal and the output signal in the same figure for each part. Adjust

the title, xlabel and ylabel accordingly.

(d) Explain any differences between using conv and filter commands.

 Problem 2.

Consider an LTI system whose input 𝑥𝑥[𝑛𝑛] and output 𝑦𝑦[𝑛𝑛] are related by the following LCCDE

Equation 1-9: 𝒚𝒚[𝒏𝒏] = 𝟏𝟏
𝟐𝟐
𝒚𝒚[𝒏𝒏 − 𝟏𝟏] − 𝟏𝟏

𝟒𝟒
𝒚𝒚[𝒏𝒏 − 𝟐𝟐] + 𝒙𝒙[𝒏𝒏] + 𝟐𝟐𝒙𝒙[𝒏𝒏 − 𝟏𝟏] + 𝒙𝒙[𝒏𝒏 − 𝟑𝟑]

(a) Determine and plot the impulse response of the system over 0 ≤ 𝑛𝑛 ≤ 100, and determine the

stability of LTI system from ℎ[𝑛𝑛]. Hint: An LTI system with impulse response ℎ[𝑛𝑛] is stable

if and only if ℎ[𝑛𝑛] is absolutely summable.

(b) Determine and plot the output 𝑦𝑦[𝑛𝑛] over 0 ≤ 𝑛𝑛 ≤ 200, if the input to this system is

Equation 1-10: 𝒙𝒙[𝒏𝒏] = [𝟏𝟏𝟏𝟏 + 𝟑𝟑 𝐜𝐜𝐜𝐜𝐜𝐜(𝟎𝟎.𝟐𝟐𝟐𝟐𝒏𝒏) − 𝟏𝟏𝟏𝟏 𝐜𝐜𝐬𝐬𝐬𝐬(𝟎𝟎.𝟕𝟕 𝟐𝟐𝒏𝒏)]𝒖𝒖[𝒏𝒏]

Note: Plot the input signal and the output signal in the same figure for each part. Adjust the title,

xlabel and ylabel accordingly.

 Problem 3.

A digital differentiator is given by

Equation 1-11: 𝒚𝒚[𝒏𝒏] = 𝒙𝒙[𝒏𝒏] − 𝒙𝒙[𝒏𝒏 − 𝟏𝟏]

which computes a backward first-order difference of the input sequence. Implement this

differentiator on the following sequences using filter function, plot the results and give your

comments on the output results.

(a) 𝑥𝑥[𝑛𝑛] = 5(𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 30]), (rectangle pulse)

(b) 𝑥𝑥[𝑛𝑛] = 𝑛𝑛(𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 20]) + (40 − 𝑛𝑛)(𝑢𝑢[𝑛𝑛 − 20] − 𝑢𝑢[𝑛𝑛 − 40]), (triangle pulse)

(c) 𝑥𝑥[𝑛𝑛] = 15 sin �𝜋𝜋𝑛𝑛
25
� (𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 100]), (sinusoidal pulse)

Note: plot the input signal and the output signal in the same figure for each part. Adjust the title,

xlabel and ylabel accordingly.

8 | P a g e

 Problem 4.

A common example of a digital signal processing application is the removal of noise. Let 𝑥𝑥[𝑛𝑛] be

the input signal to the LTI system-1 in Figure 1-3, and assume its output signal 𝑦𝑦[𝑛𝑛] to be corrupted

by a random noise 𝑑𝑑[𝑛𝑛] such that the noisy signal 𝑣𝑣[𝑛𝑛] = 𝑦𝑦[𝑛𝑛] + 𝑑𝑑[𝑛𝑛]. The objective is to

operate on 𝑣𝑣[𝑛𝑛] so to generate a signal 𝑦𝑦�[𝑛𝑛] which is a reasonable approximation to 𝑦𝑦[𝑛𝑛] and then

recover the input signal 𝑥𝑥�[𝑛𝑛]. A simple approach is averaging a number of input samples around

the sample at instant 𝑛𝑛. For example, a three-point moving weighted average filter is given by

Equation 1-12: 𝒚𝒚�[𝒏𝒏] = 𝟏𝟏
𝟒𝟒

(𝒗𝒗[𝒏𝒏 − 𝟏𝟏] + 𝟐𝟐𝒗𝒗[𝒏𝒏] + 𝒗𝒗[𝒏𝒏 + 𝟏𝟏])

In order to compute 𝑦𝑦�[𝑛𝑛] using filter function at first we change the variable 𝑛𝑛 → 𝑛𝑛 − 1, now

we have:

Equation 1-13: 𝒚𝒚�𝒏𝒏𝒏𝒏𝒏𝒏[𝒏𝒏] = 𝒚𝒚�[𝒏𝒏 − 𝟏𝟏] =1/4(𝒗𝒗[𝒏𝒏 − 𝟐𝟐] + 𝟐𝟐𝒗𝒗[𝒏𝒏 − 𝟏𝟏] + 𝒗𝒗[𝒏𝒏])

After computing the 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛[𝑛𝑛] using filter function we should consider the following equation

to compute 𝑦𝑦�[𝑛𝑛]

Equation 1-14: 𝒚𝒚�[𝒏𝒏] = 𝒚𝒚�𝒏𝒏𝒏𝒏𝒏𝒏[𝒏𝒏 + 𝟏𝟏]

LTI System-1 +
three-point

moving average
filter

LTI System-2

d[n]

x[n] y[n] y[n]v[n] x[n]

Figure 1-3: A recovering process for additive noise

Given the above system in Figure 1-3 where

• 𝑥𝑥[𝑛𝑛] is given by the following MATLAB code
%%==========================
Number_of_samples = 200;
Time_length = 20;
Ts = Time_length / (Number_of_samples - 1);
n = 0 : Ts : Time_length;
%real signal, non-periodic
X = ((0.9) .^ n) .* cos(2 * pi .* n);
%%==========================

• LTI system-1 is given by

Equation 1-15: 𝒚𝒚[𝒏𝒏] − 𝟏𝟏
𝟒𝟒
𝒚𝒚[𝒏𝒏 − 𝟏𝟏] = 𝒙𝒙[𝒏𝒏]

9 | P a g e

• 𝑑𝑑[𝑛𝑛] is a Gaussian noise with zero mean and 0.2 standard deviation.

• LTI system-2 is given by

Equation 1-16: 𝒙𝒙�[𝒏𝒏] = 𝒚𝒚�[𝒏𝒏] − 𝟏𝟏
𝟒𝟒
𝒚𝒚�[𝒏𝒏 − 𝟏𝟏]

(a) Determine and plot each of the following signals:

 𝑥𝑥[𝑛𝑛],𝑦𝑦[𝑛𝑛],𝑑𝑑[𝑛𝑛], 𝑣𝑣[𝑛𝑛],𝑦𝑦�[𝑛𝑛], 𝑥𝑥�[𝑛𝑛];

make sure that you plot all signal in the same figure using subplot command and adjust the

title, xlabel and ylabel accordingly.

(b) Calculate the mean square error (MSE) between 𝑥𝑥[𝑛𝑛] and 𝑥𝑥�[𝑛𝑛] and the ratio of the MSE to the

squared size of 𝑥𝑥[𝑛𝑛].

Hint 1: If we have an original signal 𝑥𝑥[𝑛𝑛] and a recovered signal 𝑥𝑥�[𝑛𝑛], both of length N, the mean

square error is calculated as

Equation 1-17:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑥𝑥[𝑛𝑛] − 𝑥𝑥�[𝑛𝑛])2
𝑁𝑁−1

𝑛𝑛=0

Also, the squared size of the 𝑥𝑥[𝑛𝑛] (energy) is calculated as

Equation 1-18:

𝑀𝑀 = �(𝑥𝑥[𝑛𝑛])2
𝑁𝑁

𝑛𝑛=1

Hint 2: In order to generate a Gaussian noise with determined mean and variance we can use the

following MATLAB code
Gaussian_noise = sqrt(v) * randn(size(signal)) + m;

where v is variance, m is mean of the Gaussian noise, and randn is a MATLAB function to

generate normally distributed random numbers [3].

Hint 3: we can use the MATLAB built-in function filter to compute the output of LTI systems

and Moving Average Filter in Figure 1-3.

10 | P a g e

Lab 2. The Fourier Transform and the Z-
Transform

Objectives
• To introduce the Discrete Fourier Transform (DFT) as a signal analysis tool

• To see how Z-transform can be used to answer questions concerning stability and causality

• To see how Z-transform can be used to determine system output

• To study the use of Z-transform in the systems design process

• To see how Z-transform is used in the analysis for frequency response

Signal Acquisition
Prior to coming to the lab, you should acquire a real-life signal of some sort. Recall that a signal

is a stream of data. The stream should be single channel and one dimensional. It should of course

be a digital signal. You can use MATLAB or any other software to acquire a digital signal.

You should know the sampling rate and the unit of the samples (for example, if the signal is the

output of a stereo amplifier to a speaker, the unit might be volts). If you cannot say what unit it is,

then explain it as best you understand it.

The file containing your signal should be ASCII readable format (text). It should be such that it

can be loaded into MATLAB using the “load” command. This means that the file can take one of

the two following formats:

1. The number representing each sample is placed on a new line. Thus, there is only one

number on each line (column vector).

2. The numbers representing the samples are all on the same line each separated by one or

more spaces. This file contains one line (row vector).

11 | P a g e

The Fourier Transform: The Spectrum of a Signal
We learned how to express a discrete-time signal in the frequency domain using the Discrete-

Time Fourier Transform (DTFT), see chapter 2 of Oppenheim and Schaefer [1]. The

transform takes the following equation

Equation 2-1:

𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗� = � 𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗𝑗𝑗𝑛𝑛
∞

𝑛𝑛=−∞

This transform must be done on pencil and paper and cannot be done using a digital computer

because it is a function of a continuous-variable (the frequency 𝜔𝜔). The Discrete Fourier

Transform (DFT) is similar to the DTFT in Equation 2-1, but can be done on a digital computer

since it is a function of a discrete-variable (the frequency index k). The DFT is defined as

Equation 2-2:

𝑋𝑋(𝑘𝑘) = �𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑛𝑛𝑘𝑘

𝑁𝑁−1

𝑛𝑛=0

= �𝑥𝑥[𝑛𝑛]𝑊𝑊𝑁𝑁
𝑛𝑛𝑘𝑘

𝑁𝑁−1

𝑛𝑛=0

for 𝑘𝑘 = 0, … ,𝑁𝑁 − 1, where 𝑊𝑊𝑁𝑁 ≜ 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 . The DFT X(k) can be considered as taking samples of

the DTFT 𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗�. The DFT is a different Fourier transform than the DTFT. On the other hand,

the Fast Fourier Transform (FFT) is not a new Fourier transform but a method of evaluating the

DFT that is computationally more efficient than the DFT. The Discrete Fourier transform (DFT)

is performed in MATLAB by using the function fft. The output of the transform, which we

denote by 𝑋𝑋 is a complex sequence of length N samples representing the phase and magnitude

information contained in the spectrum. The important point to note here is that the samples of the

DFT spectrum are spaced in normalized frequency by

Equation 2-3: 𝝎𝝎𝒌𝒌 = 𝟐𝟐𝟐𝟐𝒌𝒌
𝑵𝑵

 𝒇𝒇𝒇𝒇𝒇𝒇 𝒌𝒌 = 𝟎𝟎,𝟏𝟏, … ,𝑵𝑵− 𝟏𝟏

This means that the spectral width (frequency separation) of each DFT sample is

Equation 2-4: 2𝜋𝜋
𝑁𝑁

 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠

Now consider the following example from MATLAB help for the fft function [3].

12 | P a g e

 Example 1.

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1500; % Length of signal
t = (0:L-1)*T; % Time vector

%Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and
% a 120 Hz sinusoid of amplitude 1.
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

%Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2*randn(size(t));

%Plot the noisy signal in the time domain.
plot(1000 * t(1 : 50), X(1 : 50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')

%Compute the Fourier transform of the signal.
Y = fft(X);

%Compute the two-sided spectrum P2.
%Then compute the single-sided spectrum P1 based on P2 and
% the even-valued signal length L.

P2 = abs(Y / L);
P1 = P2(1 : L / 2 + 1);
P1(2 : end - 1) = 2 * P1(2 : end - 1);

%Define the frequency domain f and plot the single-sided amplitude
% spectrum P1.
f = Fs * (0 : (L / 2)) / L;
figure, plot(f, P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

As can be seen in the code above, a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120

Hz sinusoid of amplitude 1 is formed and then corrupted with zero-mean white noise with a

variance of 4. The Fourier transform of the signal is computed using fft function. After

computing Fourier coefficients the two-sided and single-sided spectrum will be computed. One of

the most important points here is about the scaling of the resulted Fourier coefficients by 1/𝐿𝐿. 𝐿𝐿

here is the length of the input signal. In general, to return FFT amplitudes equal to the amplitudes

of the input signal we need to normalize FFT coefficients by the length of the input signal (the

number of sample points of the input signal).

13 | P a g e

We also know that the Fourier transform of a real-valued signal is conjugate symmetric [2]. It

means that the negative coefficients are conjugate of the positive as in

Equation 2-5: 𝑿𝑿(−𝒌𝒌) = 𝑿𝑿∗(𝒌𝒌)

One half of the spectrum is the positive frequencies, and the other half is the negative. Since in the

above example the single-sided amplitude spectrum is to be computed, the amplitude of each

frequency (except DC) is going to be doubled to account for the contributions of data on the other

side of the spectrum. The results of the above code has been shown in Figure 2-1.

(a)

(b)

Figure 2-1: Signal corrupted with zero-mean random noise (a), and single-sided amplitude spectrum (b)

14 | P a g e

Lab Problems I
 Problem 1.

Look in the folder “Data_for_DSP_Labs” and find the README file. Read this file carefully. It

will tell you the names of several signals, names of the corresponding corrupted signals and a short

description of each of the signals. Now, take the spectrum of each of the signals and their

corruption. Plot the signals in the time domain and provide sketches of them in the frequency

domain. Describe qualitatively what you see in the plots.

The Z-Transform
Laplace transform can be considered to be a generalization of the Fourier Transform (FT) in the

continuous-time domain. Similarly, in the discrete-time domain, Z-transform is a generalization of

the discrete-time Fourier Transform (DTFT). Z-transform plays an important role in both analysis

and design of discrete-time systems. It provides another domain in which signals and systems can

be investigated. The two–sided or bilateral Z-transform can be written as the following summation

Equation 2-6:

𝑋𝑋(𝑧𝑧) = � 𝑥𝑥[𝑛𝑛]𝑧𝑧−𝑛𝑛
∞

𝑛𝑛=−∞

or 𝑋𝑋(𝑧𝑧) = 𝒵𝒵{𝑥𝑥[𝑛𝑛]}. Two important properties of Z-transform are apparent from its definition.

First, this transform is linear. Its second property enables the treatment of shifted sequences, i.e.

Equation 2-7:

x[n] ⇔ X(z) ⇒ x[n − k] ⇔ z−kX(z)

Z-transform has many other valuable properties that make it a powerful analysis tool. One of the

most important properties is the equivalence of convolution of two sequences and the

multiplication of Z-transform in the transform domain, i.e.

Equation 2-8:

x[n] ∗ y[n] ⇔ X(z)Y(z)

15 | P a g e

where ∗ denotes the convolution operation in time domain. By expressing the complex variable 𝑧𝑧

in the polar form as 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑗𝑗𝑗𝑗, Z-transform has an interpretation in terms of Fourier transform.

With z so expressed, the Z-transform becomes

Equation 2-9:

𝑋𝑋�𝑟𝑟𝑒𝑒𝑗𝑗𝑗𝑗� = � 𝑥𝑥[𝑛𝑛](𝑟𝑟𝑒𝑒𝑗𝑗𝑗𝑗)−𝑛𝑛
∞

𝑛𝑛=−∞

= � 𝑥𝑥[𝑛𝑛]𝑟𝑟−𝑛𝑛𝑒𝑒−𝑗𝑗𝑗𝑗𝑚𝑚
∞

𝑛𝑛=−∞

If 𝑟𝑟 = 1, i.e. |𝑧𝑧| = 1, the Z-transform is equivalent to the DTFT of the sequence 𝑥𝑥[𝑛𝑛].

In this experiment, we motivate the use of Z-transform by the role it plays in both design and

analysis of discrete-time systems.

Lab Problems II
 Problem 2.

Knowledge of the impulse response of a system is very important in digital signal processing. In

this problem, you will find the system transfer function of an unknown system by determining the

system impulse response. Consider the following MATLAB function usys:

function output = usys(input)
output = zeros(1, length(input));
output(1) = input(1);
for i = 2 : length(input)
 output(i) = 1 / 2 * output(i - 1) + input(i);
end

(a) Show that the above function usys represents an LTI system.

(b) Find the impulse response of the unknown system defined by the above function
usys. This can be done by using an impulse as the input to usys. Use the MATLAB
command “stem” to show the results. (You should place usys in an m-file)

i. Generate an N-point sample input (take N=32 for this experiment).

𝑥𝑥[𝑛𝑛] = 𝛿𝛿[𝑛𝑛] = �1, 𝑛𝑛 = 0
0, 0 < 𝑛𝑛 ≤ 𝑁𝑁 − 1

ii. Using this input, determine the output of the system by calling the function usys.

16 | P a g e

(c) If we want to compute the impulse response of the system usys theoretically, it can be
done easily as in Equation 2-10. Plot the resulted impulse response and compare it with the
output of part a).ii of this problem 2.
Equation 2-10:

𝑦𝑦[𝑛𝑛] −
1
2
𝑦𝑦[𝑛𝑛 − 1] = 𝑥𝑥[𝑛𝑛]

𝑌𝑌(𝑧𝑧) −
1
2
𝑧𝑧−1𝑌𝑌(𝑧𝑧) = 𝑋𝑋(𝑧𝑧) → 𝐻𝐻(𝑧𝑧) =

𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧) =

1

1 − 1
2 𝑧𝑧

−1

→ ℎ[𝑛𝑛] = �
1
2
�
𝑛𝑛
𝑢𝑢[𝑛𝑛], for 𝑅𝑅𝑅𝑅𝑅𝑅 = |𝑧𝑧| >

1
2

(d) Do the following:

i. Define x1[n] = 2δ[n − 3] using 100 samples.

ii. Find the output 𝑦𝑦1[𝑛𝑛] for the input x1[n] by calling the function usys.

iii. Using the convolution function conv in MATLAB, evaluate 𝑦𝑦2[𝑛𝑛] as
𝑦𝑦2[𝑛𝑛] = 𝑥𝑥1[𝑛𝑛] ⋇ ℎ[𝑛𝑛]

(e) Is this system stable? Explain why.

 Problem 3.

The focus in this problem is on demonstrating how the Z-transform answers questions concerning

causality, stability and convergence. Consider the second-order system transfer function

Equation 2-11:

𝐻𝐻(𝑧𝑧) =
1 − 1.7𝑧𝑧−1

1 − 2.05 𝑧𝑧−1 + 𝑧𝑧−2

and an input sequence specified by

Equation 2-12:

𝑋𝑋(𝑧𝑧) =
1

1 − 0.9𝑧𝑧−1

17 | P a g e

The input sequence is taken to have a region of convergence (ROC) given by |𝑧𝑧| > 0.9. If we want

to derive theoretically the inverse z-transform of 𝐻𝐻(𝑧𝑧) associated with the different regions of

convergence, we can study the following equation:

Equation 2-13:

𝐻𝐻(𝑧𝑧) =
1 − 1.7𝑧𝑧−1

1 − 2.05𝑧𝑧−1 + 𝑧𝑧−2
=

1 − 1.7𝑧𝑧−1

(1 − 1.25𝑧𝑧−1)(1 − 0.8𝑧𝑧−1)

→ 𝐻𝐻(𝑧𝑧) =
𝐴𝐴

(1 − 1.25𝑧𝑧−1) +
𝐵𝐵

(1 − 0.8𝑧𝑧−1)

→ 𝐴𝐴 = −1,𝐵𝐵 = 2

→ 𝐻𝐻(𝑧𝑧) =
−1

(1 − 1.25𝑧𝑧−1) +
2

(1 − 0.8𝑧𝑧−1)

Figure 2-2: Pole-Zero locations of the system

If ROC is |𝑧𝑧| < 0.8 it does not include unit circle (the Fourier Transform does not exist)
therefore, the system is not stable, and as the ROC is not right sided the system is not causal.

If ROC is 0.8 < |𝑧𝑧| < 1.25 it includes unit circle (the Fourier Transform exists) therefore,
the system is stable and as the ROC is a ring, therefore the system is not causal.

If ROC is |𝑧𝑧| > 1.25 it does not include unit circle (the Fourier Transform does not exist)
therefore, the system is not stable and as the ROC is right sided, the system can be causal.

(a) Use MATLAB built-in function zplane to plot the true pole/zero locations.

18 | P a g e

(b) If we want to calculate the output of the system to the input sequence corresponding to
𝑋𝑋(𝑧𝑧) with the stable sequence corresponding to 𝐻𝐻(𝑧𝑧) we will have
Equation 2-14:

𝑌𝑌(𝑧𝑧) = 𝑋𝑋(𝑧𝑧)𝐻𝐻(𝑧𝑧) =
1 − 1.7𝑧𝑧−1

(1 − 1.25𝑧𝑧−1)(1 − 0.8𝑧𝑧−1)(1 − 0.9𝑧𝑧−1)

→ 𝑌𝑌(𝑧𝑧) =
𝐴𝐴

(1 − 1.25𝑧𝑧−1) +
𝐵𝐵

(1 − 0.8𝑧𝑧−1) +
𝑅𝑅

(1 − 0.9𝑧𝑧−1)

→ 𝑌𝑌(𝑧𝑧) =
−3.57

(1 − 1.25𝑧𝑧−1) +
−16

(1 − 0.8𝑧𝑧−1) +
20.43

(1 − 0.9𝑧𝑧−1) ,𝑅𝑅𝑅𝑅𝑅𝑅: 0.9 < |𝑧𝑧| < 1.25

→ 𝑦𝑦[𝑛𝑛] = −3.57 × −1 × (1.25)𝑛𝑛𝑢𝑢[−𝑛𝑛 − 1] − 16 × (0.8)𝑛𝑛𝑢𝑢[𝑛𝑛] + 20.43 × (0.9)𝑛𝑛𝑢𝑢[𝑛𝑛]

Generate the convolution of the input sequence for X(z) with the stable sequence(s)

corresponding to H(z) using the MATLAB function conv. Consider an input sequence

of length N = 10 samples and impulse response of length N = 250 samples. Then

compare these results with the theoretical results of the above analysis.

The Frequency Response from the Z-Transform
Recall that the frequency response of a system is equivalent to evaluating the transfer function

𝐻𝐻(𝑧𝑧) of that system on the unit circle, i.e. let 𝑧𝑧 = 𝑒𝑒𝑗𝑗𝑗𝑗

Equation 2-15: 𝑯𝑯�𝒏𝒏𝒋𝒋𝝎𝝎� = 𝑯𝑯(𝒛𝒛)|𝒛𝒛=𝒏𝒏𝒋𝒋𝝎𝝎

Using this methodology, it is possible to sketch the frequency response of the system that is related

to its poles and zeros. Here we will only consider the magnitude response, while phase

response can be considered in a similar way. Let 𝐻𝐻(𝑧𝑧) be written in its factorized form

Equation 2-16:

𝐻𝐻(𝑧𝑧) =
𝑅𝑅(𝑧𝑧 − 𝑏𝑏1)(𝑧𝑧 − 𝑏𝑏2) … (𝑧𝑧 − 𝑏𝑏𝑀𝑀)
(𝑧𝑧 − 𝑎𝑎1)(𝑧𝑧 − 𝑎𝑎2) … (𝑧𝑧 − 𝑎𝑎𝑁𝑁)

Then, the magnitude response can be written as

Equation 2-17:

|𝐻𝐻(𝑧𝑧)| =
|𝑅𝑅|�(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑏𝑏1)��(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑏𝑏2)�… �(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑏𝑏𝑀𝑀)�

|(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑎𝑎1)||(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑎𝑎2)| … |(𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑁𝑁)|

19 | P a g e

A geometrical interpretation can be formed by evaluating the magnitude response of an

arbitrary term (𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖). The point 𝑒𝑒𝑗𝑗𝑗𝑗 lies on the unit circle at an angle of 𝜔𝜔 as in Figure 2-3.

The location of 𝑧𝑧𝑖𝑖 = |𝑧𝑧𝑖𝑖|𝑒𝑒𝑗𝑗𝑗𝑗 is also shown in the figure. The quantity of interest is the

magnitude of the difference between these two vectors as shown in Figure 2-3.

Figure 2-3: Geometric interpretation of the contribution of the magnitude response due to a single root at an arbitrary
frequency.

It is evident that as the vector 𝑒𝑒𝑗𝑗𝑗𝑗 rotates from 0 to 2𝜋𝜋 in a counter-clock-wise direction,

the magnitude of the difference vector (𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖) also varies. The implication of the

geometric representation is that we can evaluate the magnitude response due to the root 𝑧𝑧𝑖𝑖

as the length of this difference vector at different frequencies in the range [0, 2𝜋𝜋].

In Figure 2-3, at ω = 0, the magnitude of the difference vector is some finite value. As ω

starts to increase, this value starts decreasing and is minimum when ω = θ, the angle of

the root zi. If we continue to increase ω, the difference magnitude again starts to increase

until ω = 2π at which point everything is repeated again.

From this geometrical interpretation, the idea of periodicity of DTFT is evident. That is, if

we continue to rotate 𝑒𝑒𝑗𝑗𝑗𝑗 around the unit circle beyond 2𝜋𝜋, the magnitude (�𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖�)

starts to repeat. Each such revolution of the magnitude around the unit circle corresponds

to a single period which leads to the idea of periodicity of the DTFT.

20 | P a g e

The example of Figure 2-3 illustrates how the graphical representation can be generalized

to represent any arbitrary transfer function 𝐻𝐻(𝑧𝑧). The magnitude response can be represented as

the product of individual difference vectors for the zeros divided by the product of difference

vectors for the poles at each frequency.

At this time, several useful observations relating the magnitude response and pole/zero locations

can be made. Zeros close to the unit circle cause the DTFT magnitude dip in the region near the

zeros and the minimum value of the dip occurs at the angle of the zero. If the zero is on

the unit circle, the DTFT magnitude is zero for that frequency (angle of zero). Similarly,

the poles close to the unit circle force a peak in the magnitude response at frequencies close to the

angle of the poles. With these observations in mind, we are able to generate a rule for

sketching the magnitude response of 𝐻𝐻(𝑧𝑧). As we move around the unit circle the

magnitude peaks when we pass close to a pole and dips when we pass near a zero. The

sharpness of the peaks and valleys depend on the closeness of the poles and zeros on the

unit circle. Poles and zeros far from the unit circle do not affect the magnitude response

significantly. Consider the following example:

 Example 2. Given an all-pole filter (IIR) transfer function

Equation 2-18: 𝑯𝑯(𝒛𝒛) = 𝟏𝟏
𝟏𝟏−𝟎𝟎.𝟏𝟏𝒛𝒛−𝟏𝟏+𝟎𝟎.𝟐𝟐𝒛𝒛−𝟐𝟐−𝟎𝟎.𝟏𝟏𝒛𝒛−𝟑𝟑+𝟎𝟎.𝟎𝟎𝟎𝟎𝟕𝟕𝒛𝒛−𝟒𝟒+𝟎𝟎.𝟏𝟏𝟒𝟒𝒛𝒛−𝟏𝟏+𝟎𝟎.𝟏𝟏𝟏𝟏𝒛𝒛−𝟔𝟔

i. Find its magnitude response using the MATLAB function freqz. From the
magnitude response what can be said about the pole locations?

ii. From the magnitude response, try to sketch the pole/zero plot.

iii. Using zplane function, plot the true pole/zero locations.
b = [1]; %numerator coefficients (b) according to LCCDE
a = [1 -0.5 0.2 -0.1 0.007 0.14 0.15]; %denominator coefficients (a)
according to LCCDE
[h, w] = freqz(b, a, 'whole', 2001); %computing the frequency response
of the filter
plot(w / pi, 20 * log10(abs(h)));
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')
figure, zplane(b, a); %Zero-Pole plot

21 | P a g e

Figure 2-4: The relation between magnitude of frequency response and Zero-Pole plot

In Figure 2-4 (left), it is obvious that we have two strong peaks around (0.16𝜋𝜋 𝑎𝑎𝑛𝑛𝑑𝑑 1.84𝜋𝜋) which

informs us about two poles near the unit circle for those two angles. We also have two smaller

peaks at approximately (𝜋𝜋/2 𝑎𝑎𝑛𝑛𝑑𝑑 3𝜋𝜋/2) which informs us about the existence of two other poles

approximately near the unit circle. And if we zoom in, we can see two small local maximum in the

magnitude of frequency response approximately at (0. 8𝜋𝜋 𝑎𝑎𝑛𝑛𝑑𝑑 1.2𝜋𝜋) which relate to those two

poles which are located far away from unit circle.

In order to find the poles for this system, we can also use the roots MATLAB built-in function as

follow:

a = [1 -0.5 0.2 -0.1 0.007 0.14 0.15]
roots(a)

The results will be as follow (which are exactly the same as poles location in Figure 2-4)

 0.7496 + 0.4188i
 0.7496 - 0.4188i
-0.0090 + 0.7803i
-0.0090 - 0.7803i
-0.4906 + 0.3056i
-0.4906 - 0.3056i

22 | P a g e

Lab Problems III

 Problem 4.

(a) For the all-zero (FIR) filter transfer function given by H(z)
Equation 2-19: 𝑯𝑯(𝒛𝒛) = 𝟏𝟏 + 𝟏𝟏.𝟗𝟗𝒛𝒛−𝟏𝟏 + 𝟎𝟎.𝟖𝟖𝒛𝒛−𝟐𝟐 − 𝟎𝟎.𝟖𝟖𝒛𝒛−𝟑𝟑 − 𝟎𝟎.𝟕𝟕𝒛𝒛−𝟒𝟒

i. Find its magnitude response using the MATLAB function freqz. From the
magnitude response what can be said about the pole locations?

ii. From the magnitude response, try to sketch the pole/zero plot.

iii. Using zplane function, plot the true pole/zero locations.

(b) Repeat (a) for the following transfer function (use a value of 𝛼𝛼 = 0.8)
Equation 2-20:

𝐻𝐻(𝑧𝑧) =
1 − 2 cos𝜔𝜔0 𝑧𝑧−1 + 𝑧𝑧−2

1 − 2𝛼𝛼 cos𝜔𝜔0 𝑧𝑧−1 + 𝑧𝑧−2
 , 𝜔𝜔0 = 𝜋𝜋/4

i. What visible clues in the magnitude response of the given transfer function provide
information about the pole/zero locations?

ii. How are these clues affected by the poles and zeros away from the unit circle?

iii. How does 𝛼𝛼 affect the pole locations? What values can 𝛼𝛼 take such that the
system is stable? Hint: Consider |𝛼𝛼| > √2 and |𝛼𝛼| < √2 and explain your observations.

iv. Based on your sketch of the magnitude response from the pole/zero plot, what can
you say about the transfer function of this filter (What does this system do)?

 Problem 5.
In this discussion, the effect of pole locations on the output of a discrete-time system is

considered. The effect that the poles have on system dampening behavior is also investigated by

examining a simple system. An oscillator can be understood as a system that continues to

generate an output between prescribed limits once it has been started, i.e. a marginally

stable system. An example of two pole oscillator can be defined as

Equation 2-21:

ℎ(𝑛𝑛) = [𝑟𝑟𝑛𝑛 cos(𝜔𝜔0𝑛𝑛)]𝑢𝑢(𝑛𝑛) ⇔𝐻𝐻(𝑧𝑧) =
1 − [𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝜔𝜔0]𝑧𝑧−1

1 − [2𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝜔𝜔0]𝑧𝑧−1 + 𝑟𝑟2𝑧𝑧−2
, |𝑧𝑧| > 𝑟𝑟

23 | P a g e

If the sampling rate is 1200Hz and the frequency of the system (resonant or center

frequency) taken to be 35Hz, then:

 Equation 2-22:

Ω0 = 2𝜋𝜋 × 35 �
𝑟𝑟𝑎𝑎𝑑𝑑
𝑠𝑠𝑒𝑒𝑠𝑠

� , 𝑓𝑓𝑠𝑠 = 1200 𝐻𝐻𝑧𝑧 → 𝜔𝜔0 �
𝑟𝑟𝑎𝑎𝑑𝑑

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒
� = �

Ω0
𝑓𝑓𝑠𝑠
� = (

2𝜋𝜋 × 35
1200

)

The output of the oscillator is to be a sequence of real numbers. A two pole oscillator has

a complex-conjugate pair of poles that ensure a real system. The output of this two pole

oscillator contains a sinusoid of frequency 35 Hz. Considering Equation 2-21 answer the

following questions:

(a) Using zplane function, plot the true pole/zero locations for 𝑟𝑟 = 1. Give an impulse to

the input and plot the output. Generate and plot 256 samples of the output. Do you

see the oscillations?

(b) Using zplane function, plot the true pole/zero locations for 𝑟𝑟 < 1 (or 𝑟𝑟 = 1 − 𝜀𝜀). Give

an impulse to the input and plot the output. Generate and plot 256 samples of the

output. Do you see the output of the oscillator be dampened?

24 | P a g e

Lab 3. The Sampling Theorem

Objectives
• To understand the issues involved in sampling of a continuous-time signal
• To study the effects of different sampling rates

Sampling Issues
A signal can be classified as either continuous or discrete based on its independent variable (time).

Continuous-time signals are defined along a continuum of time whereas discrete-time signals are

defined at discrete times and represented as sequences of numbers. Continuous-time signals are

often referred to as analog signals. Speech signals or the scan of the electrical activity of the brain

(electroencephalogram or EEG) are examples of such signals.

In addition, the signal amplitude may also be either continuous or discrete. If both time and

amplitude of the signal are discrete, it is called a digital signal. Examples of which are computer

data and telegraph signals.

For processing, transmitting, and storing of continuous-time signals, a huge size of data should be

manipulated which is not efficient and applicable in most of signal processing applications.

Furthermore, numerous digital signal processors, software, tools, and etc. exist todays which can

only be employed for manipulating digital signals. For these reasons it is essential to sample

continuous-time signals. Sampling process may result in information loss. Sampling theorem is a

theorem that expresses the process of sampling operation through which information loss will not

happen.

25 | P a g e

Periodic Sampling
One of the most popular sampling methods is periodic sampling. In the periodic sampling

operation, exact values of the continuous-time signal at uniformly spaced discrete intervals (𝑛𝑛𝑇𝑇𝑠𝑠),

where 𝑇𝑇𝑠𝑠 denotes the sampling period) are retained. A sampled signal can be generated by using a

method referred to as sampling by modulation as shown in Figure 3-1, where 𝑥𝑥𝑐𝑐(𝑡𝑡) is the continues-

time signal and 𝑠𝑠(𝑡𝑡) is an impulse train (the carrier) defined as

Equation 3-1:

𝑠𝑠(𝑡𝑡) = � 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑇𝑇𝑠𝑠)
∞

𝑛𝑛=−∞

Figure 3-1: Sampling by modulation

The sampled signal 𝑥𝑥𝑠𝑠(𝑡𝑡) (where the subscript “s” refers to sampled) can now be represented as

Equation 3-2: 𝑥𝑥𝑠𝑠(𝑡𝑡) = 𝑥𝑥𝑐𝑐(𝑡𝑡)𝑠𝑠(𝑡𝑡)

26 | P a g e

Note that 𝑥𝑥𝑠𝑠(𝑡𝑡) is still a continuous-time signal. In order to understand the effect of sampling of a

continuous-time signal, it will be more straightforward to analyse it in frequency domain. The

frequency domain representation of Equation 3-2 can be obtained as follow [2]:

Equation 3-3:

𝑋𝑋𝑠𝑠(𝑗𝑗Ω) =
1
𝑇𝑇𝑠𝑠

� 𝑋𝑋𝑐𝑐�𝑗𝑗(Ω − 𝑘𝑘Ω𝑠𝑠)�
+∞

𝑘𝑘=−∞

where 𝛺𝛺𝑠𝑠 = 2𝜋𝜋
𝑇𝑇𝑠𝑠

 is the sampling frequency. It means that sampling of a continuous-time signal with

sampling period of 𝑇𝑇𝑠𝑠 will cause the frequency spectrum to be periodic with 𝛺𝛺𝑠𝑠 (sampling

frequency). It can also be shown [1] that

Equation 3-4:

𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗� = 𝑋𝑋𝑠𝑠(𝑗𝑗Ω), Ω =
𝜔𝜔
𝑇𝑇𝑠𝑠

Now with Equation 3-3 and Equation 3-4 we obtain

Equation 3-5:

𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗� =
1
𝑇𝑇𝑠𝑠

� 𝑋𝑋𝑐𝑐 �𝑗𝑗 �
𝜔𝜔
𝑇𝑇𝑠𝑠
−

2𝜋𝜋𝑘𝑘
𝑇𝑇𝑠𝑠

��
+∞

𝑘𝑘=−∞

Note that in the above equations we used 𝑡𝑡, and Ω for continues-time signals and also 𝑛𝑛, and 𝜔𝜔 for

the discrete ones. If 𝑥𝑥𝑐𝑐(𝑡𝑡) is an example of a band-limited signal, then according to the above

equations 𝑋𝑋𝑐𝑐(𝑗𝑗Ω), 𝑋𝑋𝑠𝑠(𝑗𝑗Ω), and X�𝑒𝑒𝑗𝑗𝑗𝑗� can be depicted as shown in Figure 3-2. According to

Equation 3-3, and Equation 3-5, the magnitude of the frequency spectrum has been scaled by 1
𝑇𝑇𝑠𝑠

.

27 | P a g e

Figure 3-2: Frequency representation of periodic sampling

Nyquist Theorem
The example signal shown in Figure 3-2 (the first) is a band-limited signal. It means that

Equation 3-6:

𝑋𝑋𝑐𝑐(𝑗𝑗Ω) = 0, |Ω| ≥ Ω𝑁𝑁

As mentioned above, sampling of a continuous-time signal with sampling period of 𝑇𝑇𝑠𝑠 will cause

the frequency spectrum to be periodic with 𝛺𝛺𝑠𝑠 (sampling frequency). This can be seen in Figure 3-2

(the middle). As the sampling period 𝑇𝑇𝑠𝑠 is decreased (𝛺𝛺𝑠𝑠 increases), all replicas of 𝑋𝑋𝑐𝑐(𝑗𝑗𝛺𝛺) move

farther apart. On the other hand, if 𝑇𝑇𝑠𝑠 increases (𝛺𝛺𝑠𝑠 decreases), the replicas of 𝑋𝑋𝑐𝑐(𝑗𝑗𝛺𝛺) move closer

together. As 𝑇𝑇𝑠𝑠 is continually increased, a point will be reached where the replicas will begin to

overlap as shown in Figure 3-3. This overlap of the frequency spectrum is known as aliasing or

folding. According to Figure 3-2 (the middle) the maximum sampling period (equivalent to

minimum sampling frequency) at which there is no aliasing (overlapping) is attained when

28 | P a g e

Equation 3-7:

𝛺𝛺𝑠𝑠 − 𝛺𝛺𝑁𝑁 > 𝛺𝛺𝑁𝑁 → 𝛺𝛺𝑠𝑠 > 2𝛺𝛺𝑁𝑁
It should be noted that for above equation to be valid, the continuous-time signal should be band-

limited. This theorem is very popular and is called Nyquist theorem.

Nyquist Theorem: If 𝑥𝑥𝑐𝑐(𝑡𝑡) is a band-limited continuous-time signal and sampling

frequency (𝛺𝛺𝑠𝑠) is greater than two times of maximum frequency component of the signal

(𝛺𝛺𝑁𝑁) (Equation 3-7), then 𝑥𝑥𝑐𝑐(𝑡𝑡) can be reconstructed completely from its discrete time

sequence (𝑥𝑥[𝑛𝑛]).

In order to avoid information loss due to aliasing the Nyquist theorem should be satisfied. In the

Nyquist theorem, 𝛺𝛺𝑁𝑁 is called Nyquist frequency and 𝛺𝛺𝑠𝑠 = 2𝛺𝛺𝑁𝑁 is called Nyquist rate.

Figure 3-3: As 𝜴𝜴𝒔𝒔 is continually decreased the replicas will begin to overlap. This overlap of the frequency
spectrum is known as aliasing

Reconstruction
If Nyquist theorem is satisfied while sampling a band-limited continuous-time signal, the aliasing

will not be happened and therefore, that signal can be reconstructed completely using its samples.

As mentioned before, sampling a continuous-time signal will cause its frequency spectrum to be

periodic. For reconstruction purpose, the frequency components related to the band-limited

continuous-time signal should be retained while frequencies related to its replicas should be

removed. Therefore, as shown in Figure 3-4, the reconstruction process can be done by applying

an ideal low pass filter with gain 𝑇𝑇𝑠𝑠 and cut-off frequency Ω𝑐𝑐.

Due to sampling operation as the magnitude of frequency spectrum is scaled by 1
𝑇𝑇𝑠𝑠

, the gain value

of the applied ideal low pass filter is considered to be 𝑇𝑇𝑠𝑠 to rescale the spectrum to its original

value.

29 | P a g e

Figure 3-4: Reconstruction of band-limited signal by applying an ideal low pass filter

The cut-off frequency Ω𝑐𝑐 should be determined in the range

Equation 3-8:

𝛺𝛺𝑁𝑁 < 𝛺𝛺𝑐𝑐 < 𝛺𝛺𝑠𝑠 − 𝛺𝛺𝑁𝑁

As mentioned above, 𝛺𝛺𝑠𝑠 > 2𝛺𝛺𝑁𝑁 ⇒
𝛺𝛺𝑠𝑠
2

> 𝛺𝛺𝑁𝑁 or −𝛺𝛺𝑠𝑠
2 < −𝛺𝛺𝑁𝑁. With minor modification we get 𝛺𝛺𝑠𝑠 −

𝛺𝛺𝑠𝑠
2

< 𝛺𝛺𝑠𝑠 − 𝛺𝛺𝑁𝑁, and thus 𝛺𝛺𝑠𝑠
2

< 𝛺𝛺𝑠𝑠 − 𝛺𝛺𝑁𝑁. Now since 𝛺𝛺𝑠𝑠
2

> 𝛺𝛺𝑁𝑁 ⇒ 𝛺𝛺𝑁𝑁 < 𝛺𝛺𝑠𝑠
2 < 𝛺𝛺𝑠𝑠 − 𝛺𝛺𝑁𝑁. Therefore, if

we consider Ω𝑠𝑠 = Ω𝑠𝑠
2 , Equation 3-8 will be satisfied and we get

Equation 3-9:

Ω𝑐𝑐 =
Ω𝑠𝑠
2

=
2𝜋𝜋
𝑇𝑇𝑠𝑠

×
1
2

=
𝜋𝜋
𝑇𝑇𝑠𝑠

The reconstruction process can be seen in Figure 3-5, where

Equation 3-10:

𝑥𝑥𝑠𝑠(𝑡𝑡) = � 𝑥𝑥[𝑛𝑛]𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑇𝑇𝑠𝑠)
+∞

𝑛𝑛=−∞

and 𝐻𝐻𝑟𝑟(𝑗𝑗Ω) is the ideal low pass filter where its time representation is

Equation 3-11:

ℎ𝑟𝑟(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 �
𝜋𝜋𝑡𝑡
𝑇𝑇𝑠𝑠
� =

𝑠𝑠𝑠𝑠𝑛𝑛 �𝜋𝜋𝑡𝑡𝑇𝑇𝑠𝑠
�

𝜋𝜋𝑡𝑡
𝑇𝑇𝑠𝑠

=
𝑠𝑠𝑠𝑠𝑛𝑛(Ω𝑐𝑐𝑡𝑡)
Ω𝑐𝑐𝑡𝑡

30 | P a g e

Figure 3-5: The reconstruction process

Then using convolution operation, 𝑥𝑥𝑐𝑐(𝑡𝑡) can be expressed (reconstructed) exactly in terms of its

samples 𝑥𝑥𝑐𝑐(𝑛𝑛𝑇𝑇𝑠𝑠)

Equation 3-12:

𝑥𝑥𝑐𝑐(𝑡𝑡) ≅ 𝑥𝑥𝑟𝑟(𝑡𝑡) = 𝑥𝑥𝑠𝑠(𝑡𝑡) ∗ ℎ𝑟𝑟(𝑡𝑡) = � 𝑥𝑥[𝑛𝑛]𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠�Ω𝑐𝑐(𝑡𝑡 − 𝑛𝑛𝑇𝑇𝑠𝑠)�
+∞

𝑛𝑛=−∞

= � 𝑥𝑥𝑐𝑐(𝑛𝑛𝑇𝑇𝑠𝑠)𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠�Ω𝑐𝑐(𝑡𝑡 − 𝑛𝑛𝑇𝑇𝑠𝑠)�
+∞

𝑛𝑛=−∞

In practice, the conversion of a sampled signal to a continuous-time form, referred to as the digital

to analog (D/A) operation, involves two parts, namely a hold operation followed by low pass

filtering.

The most common form of hold operation is the zero-order hold or sample and hold. The impulse

response for the sample and hold device is given by

Equation 3-13:

ℎℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = �1, 0 ≤ 𝑡𝑡 < 𝑇𝑇𝑠𝑠
0, 𝑟𝑟𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒

The operation of the sample and hold is illustrated in Figure 3-6.

31 | P a g e

Figure 3-6: Reconstruction of a continuous time signal using its samples. The input to the “Sample and Hold”
is 𝒙𝒙[𝒏𝒏] and the output is 𝒙𝒙(𝒕𝒕). The output of the “Low Pass filter” is 𝒙𝒙𝒄𝒄(𝒕𝒕).

Lab Problems
 Problem 1. Consider the sinusoidal signal

 𝑥𝑥(𝑡𝑡) = sin𝛺𝛺0𝑡𝑡, where 𝛺𝛺0 = 10𝜋𝜋 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠.

(a) Using a sampling rate 20 times the Nyquist rate, simulate the continuous-time signal 𝑥𝑥(𝑡𝑡).

Using the MATLAB plot function, generate the graph over the time interval 0 ≤ 𝑡𝑡 ≤ 1

seconds.

Hint: For this purpose, the maximum frequency of the signal should be found (𝛺𝛺0
2𝜋𝜋

) and then

the Nyquist rate will be computed easily. Here the sampling rate is considered to be 20

times of Nyquist rate so compute the wanted sampling rate (𝐹𝐹𝑠𝑠) and sampling period (𝑇𝑇𝑠𝑠).

See the following code segment for more help

t = 0 : Ts : 1; %time interval
x_s = sin(2 * pi * f_max * t);

(b) Following Equation 3-11 and Equation 3-12, one can reconstruct the signal using its

samples according to the following code segment:

32 | P a g e

h_r = sinc(pi * t / Ts);
x_c = conv(h_r, x_s, 'full');
l = length(x_c);
t_c = linspace(0, 1, l / 2);
figure, plot(t_c, x_c(1 : l / 2));

Run the code, see the results, and explain the reason of writing each of the statement of the

above code completely.

(c) Now sample 𝑥𝑥(𝑡𝑡) at 1, 2, 5, and 10 times of the Nyquist rate and reconstruct the signal

using the corresponding samples. Explain your observations of the reconstructed signals.

(d) Sample 𝑥𝑥(𝑡𝑡) at 5 times of the Nyquist rate and then apply a low-pass filter, with

Ω𝑐𝑐 = 0.2𝜋𝜋, on this signal and see the result. Reconstruct the signal using the sample and

hold operation by holding the sample for 6 next samples. Now apply a low-pass filter on

this signal and plot the reconstructed signal.

Hint 1: A low-pass filter removes high-frequency content from a signal and preserves low-

frequency content. We dedicate Lab 5 for filtering operations. For this lab, you can use the

following code segment for low-pass filtering:

b = fir1(48, 0.2); %Design a 48th-order FIR lowpass filter with w <= .2
* pi
x_c = filter(b, 1, x); %Appling filter on x using b coefficients

Hint 2: For simulating the sample and hold operation in MATLAB, if the length of the

signal 𝑥𝑥(𝑡𝑡) is 𝐿𝐿, and we want to hold each sample for n next samples (here 𝑛𝑛 = 6), we can

define a new signal with length 𝐿𝐿 × (𝑛𝑛 + 1) and then fill its elements using for loop.

 Problem 2. The signal of interest is

Equation 3-14:

𝑀𝑀(𝑡𝑡) =
1
2

sin(14𝜋𝜋𝑡𝑡) +
1
3

sin(18𝜋𝜋𝑡𝑡) +
1
5

sin(24𝜋𝜋𝑡𝑡) +
1
7

sin(30𝜋𝜋𝑡𝑡)

(a) Sample 𝑀𝑀(𝑡𝑡) on the interval 0 ≤ 𝑡𝑡 ≤ 20 at 20 times the Nyquist rate. Plot its two-sided

spectrum.

Hint: In order to plot the two-sided spectrum of signal 𝑀𝑀 with sampling frequency 𝐹𝐹𝑠𝑠 you can

use fftshift MATLAB built-in function as follow:

33 | P a g e

X = fft(S);
Y = fftshift(X); %Shift zero-frequency component to center of spectrum
L = length(Y);
P = abs(Y / L);

%Define the frequency domain f and plot the two-sided amplitude spectrum P.
f = Fs * (-L / 2 : L / 2 - 1) / L;
plot(f, P)

(b) Plot the two-sided spectrum of 𝑀𝑀(𝑡𝑡) with the following sampling frequencies:

i. 3/2 time the Nyquist rate

ii. 5/6 times the Nyquist rate

iii. 13/30 times the Nyquist rate

(c) Explain the differences in signals spectra in all of the cases of part b. In case of Nyquist

criterion (no aliasing) and violating it (having aliasing). In case of aliasing as shown in

Figure 3-3 completely explain why the resulting frequency components exist in the observed

locations? (What are these frequency locations?)

(d) Given that the sampling rate for 𝑦𝑦(𝑡𝑡) is fixed to be 20Hz, how would it be possible to ensure

that the spectrum of the sampled signal 𝑦𝑦[𝑛𝑛] for the frequencies 0 ≤ 𝑓𝑓 ≤ 10 is a true

representation. Draw a block diagram of the procedure to meet such an objective.

34 | P a g e

Lab 4. Multirate Digital Signal Processing

Objectives
• To learn how to use MATLAB to implement sampling rate conversion and multirate signal

processing systems.

Key Issues
A multirate Digital Signal Processing (DSP) system is characterized by the use of multiple

sampling rates in its realization. That is, signal samples at various points in the systems may not

correspond to the same physical sampling frequency. Some applications of multi-rate processing

include

• Sampling rate conversion between different digital audio standards

• Digital anti-aliasing filtering (used in commercial CD players)

• Sub-band coding of speech and video signals

In some applications, the need for multi-rate processing comes naturally from the problem

definition (e.g. sampling rate conversion). In other applications, multi-rate processing is used to

achieve improved performance of a DSP function (e.g. lower binary rate in speech compression).

In our previous experiments, we have assumed that all signals in a given system have the same

sampling rate. We have interpreted the time index 𝑛𝑛 as an indicator of the physical time 𝑛𝑛𝑇𝑇𝑠𝑠, where

𝑇𝑇𝑠𝑠 is the sampling interval. In many practical applications of DSP, one is faced with the problem

of changing the sampling rate of a signal, either increasing it or decreasing it by some ratio. For

example, in telecommunication systems that transmit and receive different types of signals (e.g.

speech, video, etc.), there is a requirement to process the various signals at different rates

commensurate with the corresponding bandwidths of the signals. The process of converting a

signal from a given rate to a different rate is called sampling rate conversion. In turn, systems that

employ multiple sampling rates in the processing of digital signals are called multirate digital

signal processing systems.

35 | P a g e

The two basic operations in a multirate system are decreasing and increasing the sampling rate of

a signal. The former is called decimation or down-sampling. The latter is called interpolation or

up-sampling.

Downsampling and Decimation
Downsampling can be considered as the discrete-time counterpart of sampling. Whereas in

sampling we start with a continuous-time signal 𝑥𝑥𝑐𝑐(𝑡𝑡) and convert it to a sequence of

samples 𝑥𝑥[𝑛𝑛], in downsampling we start with a discrete-time signal 𝑥𝑥[𝑛𝑛] and convert it to another

discrete-time signal 𝑥𝑥𝑜𝑜[𝑛𝑛], which consists of subsamples of 𝑥𝑥[𝑛𝑛]. Thus, the formal definition of

M-fold downsampling is

Equation 4-1:

𝑥𝑥𝑜𝑜[𝑛𝑛] = 𝑥𝑥[𝑀𝑀𝑛𝑛]

where 𝑀𝑀 is a positive integer. The block diagram representation of the downsampling operation is

shown in Figure 4-1.

Figure 4-1: Downsampling by integer factor M.

Where the output sequence 𝑥𝑥𝑜𝑜[𝑛𝑛] is sampled at sampling rate equal to (1
𝑀𝑀

)𝑡𝑡ℎ of the sampling rate

of input sequence 𝑥𝑥[𝑛𝑛]. Downsampling operation can be implemented by keeping all the input

samples that have indices equal to an integer multiple of 𝑀𝑀.

For example Figure 4-2 shows downsampling by integer factor 𝑀𝑀 = 2.

36 | P a g e

(2)

0 1 2 3 4 5 6 7 8 9

(1)

(2)

(1.5)

(0.5)
(1)

(1.5)

0 1 2 3 4

(1)

(1.5)

(1)

(1.5)

x[n]

n

xD[n]=x[2n]

n

(2)

(1)

(1.5)

(1)

Figure 4-2: Down-sampling by integer factor 𝑴𝑴 = 𝟐𝟐

Note that the samples corresponding to 𝑛𝑛 = 1, 3, 5, 7, 9 are lost by downsampling.

It is more convenient to analyse downsampling operation in frequency domain. The frequency

representation of downsampling operation is given [1] by

Equation 4-2:

𝑋𝑋𝑜𝑜�𝑒𝑒𝑗𝑗𝑗𝑗� =
1
𝑀𝑀
� 𝑋𝑋
𝑀𝑀−1

𝑖𝑖=0

�𝑒𝑒𝑗𝑗�
𝑗𝑗−2𝜋𝜋𝑖𝑖
𝑀𝑀 ��

According to Equation 4-2, downsampling by integer factor 𝑀𝑀 has three effects on the frequency

spectrum:

1. It expands the frequency spectrum by 𝑀𝑀.

2. It makes the frequency spectrum be periodic with 2𝜋𝜋 and sums up all the

resulted replicas.

3. It scales the magnitude by 1
𝑀𝑀

.

37 | P a g e

Figure 4-3: The effect of downsampling operation by factors 𝑴𝑴 = 𝟐𝟐 (the second plot), and 𝑴𝑴 = 𝟑𝟑 (the third
plot)

In Figure 4-3 these three effects can be seen on an example signal by considering two

downsampling factors 𝑀𝑀 = 2, and 𝑀𝑀 = 3. In Figure 4-3 (the second plot) aliasing does not happen

(there isn’t any overlap between replicas), but in this example when 𝑀𝑀 = 3, downsampling leads

to aliasing. As can be seen in Figure 4-3 (the third plot) red line shows the resulted frequency

spectrum after downsampling by 𝑀𝑀 = 3, and the correct frequency spectrum band which is not

affected by aliasing is in the range �− 𝜋𝜋
2

, 𝜋𝜋
2
�. In Figure 4-4 a lowpass filter with cut-off frequency

Ω𝑐𝑐 = 𝜋𝜋
3
, and gain 1 is applied on the signal before downsampling operation. Figure 4-4 second plot

shows the result of applying this filter. Due to the downsampling by factor 𝑀𝑀 = 3 the frequency

spectrum will be expanded by 3, which will now cover the range [−𝜋𝜋, 𝜋𝜋]. Although in this case

we have still information loss but compared to Figure 4-3 (the third plot), aliasing does not happen

and the correct frequency spectrum band covers whole of the range [−𝜋𝜋, 𝜋𝜋]. The downsampling

filter is called anti-aliasing filter or decimation filter.

38 | P a g e

Figure 4-4: The effect of applying lowpass filtering before downsampling operation

According to the above mentioned, it is desirable to precede the downsampler with an anti-aliasing

filter. Unlike sampling, here the input signal is already in discrete time, so we use a digital anti-

aliasing filter. The anti-aliasing filter (also called the decimation filter), should approximate an

ideal lowpass filter with cut-off frequency 𝜋𝜋
𝑀𝑀

, as shown in Figure 4-5. The combination of the

lowpass filter followed by a downsampler is called decimation.

Figure 4-5: A general decimation system: lowpass filter has gain equal to 1 and cut-off frequency 𝟐𝟐/𝑴𝑴
combined with down-sampler by integer factor M.

39 | P a g e

Upsampling and Interpolation
Upsampling is another operation on a discrete-time signal that yields a discrete-time signal.

Upsampling by factor 𝐿𝐿, adds 𝐿𝐿 − 1 new samples between each two samples of the input discrete-

time signal. The magnitude of these new added samples will be estimated by interpolation

technique. Similar to the continuous-time signals, in order to perform interpolation in discrete-

time signals, an ideal digital lowpass filter can be applied on the signal. This filtering process will

not generate additional samples, therefore, before interpolation operation an upsampler (expander)

will be employed which adds 𝐿𝐿 − 1 new samples with zero magnitude between each two samples

of the original signal. If the input signal is 𝑥𝑥[𝑛𝑛], the output signal of upsampler (expander) is 𝑥𝑥𝑛𝑛[𝑛𝑛]

which is defined as follow:

Equation 4-3:

𝑥𝑥𝑛𝑛[𝑛𝑛] = �𝑥𝑥 �
𝑛𝑛
𝐿𝐿
� 𝑛𝑛 = 0, ±𝐿𝐿, ±2𝐿𝐿, …

0 𝑅𝑅𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒

The block diagram representation of an expander with integer factor 𝐿𝐿 is shown in Figure 4-6.

Figure 4-6: Expander by integer factor L

For an example Figure 4-7 shows expanding by integer factor 𝐿𝐿 = 2.

0 1 2 3 4

(1)

(2)

(1.5)

0 1 2 3 4 5 6 7 8 9

(1)

(2)

(1.5)

(1)

x[n]

xe[n]

n

n

(1.5)

(1.5)

(1)

Figure 4-7: Expanding by integer factor 𝑳𝑳 = 𝟐𝟐

40 | P a g e

The frequency representation of an expander is [1] as follow:

Equation 4-4:

𝑋𝑋𝑛𝑛�𝑒𝑒𝑗𝑗𝑗𝑗� = 𝑋𝑋�𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�

From Equation 4-4 it is obvious that the upsampler (expander) will compress the frequency

spectrum of the signal by 𝐿𝐿. In the other words aliasing (and information loss) will not be

happened. As can be seen in Figure 4-8 an example signal is expanded by 𝐿𝐿 = 2, and because of

this its frequency spectrum has been compressed by 2.

Figure 4-8: The effect of expanding a signal with 𝑳𝑳 = 𝟐𝟐

Upsampler (expander) will place additional samples with zero magnitude between each two

samples of the original signal. Now it is the time to estimate the value of those samples by applying

an ideal interpolation filter which is an ideal digital lowpass filter. It is worth noting that upsampler

(expander) also yields undesired replicas of the signal's spectrum in the range 𝜔𝜔 ∈ [−𝜋𝜋,𝜋𝜋]. These

replicas can be eliminated by applying the mentioned interpolation filter. The interpolation filter

is also called anti-imaging filter. This filter has cut-off frequency 𝜔𝜔𝑐𝑐 = 𝜋𝜋
𝐿𝐿� and gain equal to

𝐿𝐿 [1]. The combination of upsampler (expander) followed by an interpolation filter is called

interpolation system as in Figure 4-9.

41 | P a g e

Figure 4-9: A general interpolation system: upsampler (expander) with integer factor L combined with
interpolation filter.

It should be noted that the upsampler and downsampler operations are linear but time-varying (not

time-invariant) discrete-time systems. The upsampler and the downsampler building blocks are

often involved in multirate signal processing.

Sampling Rate Conversion
A common use of multirate signal processing is for sampling rate conversion. Sampling-rate

conversion can be accomplished by first upsampling by factor 𝐿𝐿 followed by lowpass filtering and

then down-sampling by factor 𝑀𝑀 as it is observed in Figure 4-10. In this figure the sampling time

interval for all input and output signals have been shown under the name of each signal.

Interpolation and decimation filters can also be combined with each other (Figure 4-11). In this

case the lowpass filter performs both interpolation of the upsampled signal and anti-aliasing before

downsampling. If the sampling rate is to be increased, then we have 𝐿𝐿 > 𝑀𝑀. The lowpass filter

should then have a cutoff frequency 𝜋𝜋
𝑗𝑗
. If the sampling rate is to be decreased, then we have 𝐿𝐿 <

 𝑀𝑀. The lowpass filter should then have a cutoff frequency 𝜋𝜋
𝑀𝑀

. Thus, the sampling-rate conversion

filter should always have a cut-off frequency Ω𝑐𝑐 = 𝑚𝑚𝑠𝑠𝑛𝑛 �𝜋𝜋
𝑗𝑗

, 𝜋𝜋
𝑀𝑀
�.

Figure 4-10: System for changing the sampling rate by a non-integer factor with interpolation and decimation
filters.

42 | P a g e

Figure 4-11: System for changing the sampling rate by a non-integer factor with combined interpolation and
decimation filters.

Suppose that we are given a digital signal 𝑥𝑥[𝑛𝑛] sampled at interval 𝑇𝑇1 and we wish to obtain from

it a signal 𝑦𝑦[𝑛𝑛] sampled at interval 𝑇𝑇2. The techniques of decimation and interpolation enable this

operation, provided the ratio 𝑇𝑇1
𝑇𝑇2

 is a rational number say 𝑗𝑗
𝑀𝑀

. We distinguish now between two

possibilities:

1) 𝑇𝑇1 > 𝑇𝑇2, meaning that the sampling rate should be increased. This is always possible

without aliasing.

2) 𝑇𝑇1 < 𝑇𝑇2, meaning that the sampling rate should be decreased. This is possible without

aliasing only if 𝑥𝑥[𝑛𝑛] is band limited to a frequency range not higher than ±𝜋𝜋(𝑇𝑇1
𝑇𝑇2

). If 𝑥𝑥[𝑛𝑛]

does not fulfill this condition, a part of its frequency contents must be eliminated before

decimation to avoid aliasing.

Lab Problems
 Problem 1.

(a) Write a MATLAB script to generate the signals 𝑥𝑥1[𝑛𝑛], 𝑥𝑥2[𝑛𝑛], and 𝑥𝑥3[𝑛𝑛] that have the

DTFT shown in Figure 4-12 (a), (b), and (c), respectively. Make sure that each signal has

length of 1025 samples. Plot the resulting DFT over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

Hint: For this purpose you can use fir2 MATLAB function. b=fir2(n,f,m)

produces an 𝑛𝑛𝑡𝑡ℎorder FIR filter with frequencies 𝑓𝑓 and magnitudes 𝑚𝑚, returning the 𝑛𝑛 + 1

filter coefficients 𝑏𝑏 [3]. For example the following code segment will produce a function

which has frequency spectrum similar to Figure 4-12 (a).

N = 1024;
T=1/N;
f = 0 : T : 1; %Frequency range

43 | P a g e

L = length(f); %Length of f
m = zeros(1, L); %Frequency magnitude
m(1 : 1/4 * L)= -4 * f(1: 1/4 * L) + 1; %Frequency magnitude
x = fir2(n, f, m); %nth-order FIR filter with frequency-magnitude
characteristics specified in the vectors f and m.
X = fft(x); %Fourier Transform of x
L = length(X); %Length of X
fshift = linspace(-pi, pi, L); %Generate linearly spaced vector
X = fftshift(X); %Shift zero-frequency component to center of spectrum
plot(fshift, abs(X));
title('FFT of input signal X');
ax = gca; %Current axes or chart
ax.XTick = -3:.2:3;
ax.YTick = 0:.5:1;

Figure 4-12: Discrete Fourier transform of signals 𝒙𝒙𝟏𝟏[𝒏𝒏], 𝒙𝒙𝟐𝟐[𝒏𝒏] and 𝒙𝒙𝟑𝟑[𝒏𝒏].

(a)

(b)

(c)

ω 𝜋𝜋
2

 −
𝜋𝜋
2

1

−2𝜋𝜋 2𝜋𝜋 𝜋𝜋

�𝑋𝑋1(𝑒𝑒𝑗𝑗ω)�

−𝜋𝜋 0

ω 𝜋𝜋
4

 −
𝜋𝜋
4

1

−2𝜋𝜋 2𝜋𝜋 𝜋𝜋

�𝑋𝑋2(𝑒𝑒𝑗𝑗ω)�

−𝜋𝜋 0

ω 𝜋𝜋
8

 −
𝜋𝜋
8

1

−2𝜋𝜋 2𝜋𝜋 𝜋𝜋

�𝑋𝑋3(𝑒𝑒𝑗𝑗ω)�

−𝜋𝜋

44 | P a g e

(b) Use 𝑥𝑥1[𝑛𝑛] of part (a) as the input to the systems (a), (b), (c), (d), and (e) shown in

Figure 4-13 and write a MATLAB script to generate the output 𝑦𝑦[𝑛𝑛] for each system. Plot

the discrete time Fourier transform (over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋) of the input signal 𝑥𝑥1[𝑛𝑛]

and the output signal 𝑦𝑦[𝑛𝑛] on same figure using “subplot” command for each system.

Adjust the title, xlabel and ylabel for each figure accordingly. Repeat this scenario for

𝑥𝑥2[𝑛𝑛], and 𝑥𝑥3[𝑛𝑛].

Hint: In order to design a low-pass filter with order 128, cutoff frequency 𝜋𝜋
3
, and gain 𝑔𝑔,

you can use fir1 MATLAB function as follow:

b = g * fir1(128, 1/3); %Window-based low pass FIR filter cutoff pi/3
y = filter(b, 1, x); %y is the output of applying the designed filetr
on signal x

In order to do downsampling and upsampling you can use downsample and
upsample MATLAB functions [3].

(c) Explain the reason of each resulted plots in part (b) completely.

3

3

3
Lowpass filter

 Gain=1
 Cutoff=π/3

3
Lowpass filter

 Gain=3
 Cutoff=π/3

3
Lowpass filter

 Gain=3
 Cutoff=π/3

2

y[n]x[n]

x[n]

x[n]

x[n]

x[n]

y[n]

y[n]

y[n]

y[n]

v[n]

v[n]

v[n]

(a)

(b)

(c)

(d)

(e)

Figure 4-13: Down-sampler, decimation system, up-sampler, interpolation system and a rate-conversion
system.

45 | P a g e

 Problem 2.

Consider the analysis-synthesis system shown in Figure 4-14.

2hL[n]

2hH[n]

hL[n]

hH[n]

2

2

+
y[n]=yL[n]+yH[n]

yL[n]

yH[n]

x[n]

gL[n]

gH[n]

vL[n]

vH[n]

Analyzer synthesizer

wL[n]

wH[n]

Figure 4-14: An analysis-synthesis system

The lowpass filter ℎ𝑗𝑗[𝑛𝑛] and the highpass filter ℎ𝐻𝐻[𝑛𝑛] are identical in the analyzer and

synthesizer parts. The Fourier transforms of ℎ𝑗𝑗[𝑛𝑛] and ℎ𝐻𝐻[𝑛𝑛] are related by

Equation 4-5:

 𝐻𝐻𝐻𝐻�𝑒𝑒𝑗𝑗𝑗𝑗� = 𝐻𝐻𝑗𝑗�𝑒𝑒𝑗𝑗(𝑗𝑗+𝜋𝜋)�

or its Z-transform counterpart:

Equation 4-6:

 𝐻𝐻𝐻𝐻(𝑍𝑍) = 𝐻𝐻𝑗𝑗�𝑒𝑒𝑗𝑗𝜋𝜋𝑍𝑍� = 𝐻𝐻𝑗𝑗(−𝑍𝑍)

Using Z-transform to find a general expression for 𝑌𝑌(𝑍𝑍) in term of 𝑋𝑋(𝑍𝑍),𝐻𝐻𝑗𝑗(𝑍𝑍) and 𝐻𝐻𝐻𝐻(𝑍𝑍)

we will have

Equation 4-7:

𝑊𝑊𝑗𝑗(𝑍𝑍) = 𝑋𝑋(𝑍𝑍)𝐻𝐻𝑗𝑗(𝑍𝑍)

Using Equation 4-2 when downsampling factor is 𝑀𝑀 = 2, we can derive the following equation

Equation 4-8:

𝐺𝐺𝑗𝑗(𝑍𝑍) =
1
2
�𝑊𝑊𝑗𝑗 �𝑍𝑍

1
2� + 𝑊𝑊𝑗𝑗 �−𝑍𝑍

1
2�� =

1
2
�𝑋𝑋 �𝑍𝑍

1
2�𝐻𝐻𝑗𝑗 �𝑍𝑍

1
2� + 𝑋𝑋 �−𝑍𝑍

1
2�𝐻𝐻𝑗𝑗 �−𝑍𝑍

1
2��

46 | P a g e

Now using Equation 4-4 when upsampling factor is 𝐿𝐿 = 2, we can derive the following

equation.

Equation 4-9:

𝑉𝑉𝑗𝑗(𝑍𝑍) = 𝐺𝐺𝑗𝑗(𝑍𝑍2) =
1
2

[𝑋𝑋(𝑍𝑍)𝐻𝐻𝑗𝑗(𝑍𝑍) + 𝑋𝑋(−𝑍𝑍)𝐻𝐻𝑗𝑗(−𝑍𝑍)]

and now we will have

Equation 4-10:

𝑌𝑌𝑗𝑗(𝑍𝑍) = 𝑉𝑉𝑗𝑗(𝑍𝑍)𝐻𝐻𝑗𝑗(𝑍𝑍) =
1
2

[𝑋𝑋(𝑍𝑍)𝐻𝐻𝑗𝑗(𝑍𝑍) + 𝑋𝑋(−𝑍𝑍)𝐻𝐻𝑗𝑗(−𝑍𝑍)]𝐻𝐻𝑗𝑗(𝑍𝑍)

If we follow the same scenario for the second part of the system similarly we will have

Equation 4-11:

𝑌𝑌𝐻𝐻(𝑍𝑍) =
1
2

[𝑋𝑋(𝑍𝑍)𝐻𝐻𝐻𝐻(𝑍𝑍) + 𝑋𝑋(−𝑍𝑍)𝐻𝐻𝐻𝐻(−𝑍𝑍)]𝐻𝐻𝐻𝐻(𝑍𝑍)

and now we will have:

Equation 4-12:

𝑌𝑌(𝑍𝑍) = 𝑌𝑌𝑗𝑗(𝑍𝑍) + 𝑌𝑌𝐻𝐻(𝑍𝑍)

=
1
2

[𝑋𝑋(𝑍𝑍)𝐻𝐻𝑗𝑗(𝑍𝑍) + 𝑋𝑋(−𝑍𝑍)𝐻𝐻𝑗𝑗(−𝑍𝑍)]𝐻𝐻𝑗𝑗(𝑍𝑍)

+
1
2

[𝑋𝑋(𝑍𝑍)𝐻𝐻𝐻𝐻(𝑍𝑍) + 𝑋𝑋(−𝑍𝑍)𝐻𝐻𝐻𝐻(−𝑍𝑍)]𝐻𝐻𝐻𝐻(𝑍𝑍)

According to Equation 4-6 we can write

Equation 4-13:

𝑌𝑌(𝑍𝑍) = 𝑌𝑌𝑗𝑗(𝑍𝑍) + 𝑌𝑌𝐻𝐻(𝑍𝑍) =
1
2
𝑋𝑋(𝑍𝑍) ��𝐻𝐻𝑗𝑗(𝑍𝑍)�2 + �𝐻𝐻𝐻𝐻(𝑍𝑍)�2� + 𝑋𝑋(−𝑍𝑍)[𝐻𝐻𝑗𝑗(𝑍𝑍)𝐻𝐻𝐻𝐻(𝑍𝑍)]

(a) Design a lowpass FIR filter ℎ𝑗𝑗[𝑛𝑛], with order 128, cutoff frequency 𝜋𝜋
2
, and gain 1. You can

use fir1 MATLAB function.

(b) Design a highpass FIR filter ℎ𝐻𝐻[𝑛𝑛], with order 128, cutoff frequency 𝜋𝜋
2
, and gain 1. You

can use fir1 MATLAB function.

47 | P a g e

For the following parts, plot on the same figure using “subplot” command for each system.

Adjust the title, xlabel and ylabel for each figure accordingly.

(c) Plot the magnitude of both 𝐻𝐻𝑗𝑗(𝑒𝑒𝑗𝑗𝑗𝑗) and 𝐻𝐻𝐻𝐻(𝑒𝑒𝑗𝑗𝑗𝑗) over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

(d) Plot the magnitude of �𝐻𝐻𝑗𝑗�𝑒𝑒𝑗𝑗𝑗𝑗��
2

+ �𝐻𝐻𝐻𝐻�𝑒𝑒𝑗𝑗𝑗𝑗��
2
over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

(e) Plot the magnitude of 𝐻𝐻𝑗𝑗�𝑒𝑒𝑗𝑗𝑗𝑗�𝐻𝐻𝐻𝐻�𝑒𝑒𝑗𝑗𝑗𝑗� over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

(f) According to the results of parts (d) and (e) and considering Equation 4-13 what is your

idea about the value of 𝑌𝑌(𝑍𝑍).

(g) Let 𝑥𝑥[𝑛𝑛] = 𝑥𝑥𝑐𝑐(𝑛𝑛𝑇𝑇𝑠𝑠), where the continuous time signal 𝑥𝑥𝑐𝑐(𝑡𝑡) is given by

𝑥𝑥𝑐𝑐(𝑡𝑡) = 𝐴𝐴[cos(Ω1𝑡𝑡) + cos(Ω2𝑡𝑡) + cos(Ω3𝑡𝑡) + cos(Ω4𝑡𝑡)]

where, Ω1 = 1.2𝜋𝜋 × 103 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠, Ω2 = 2.4𝜋𝜋 × 103 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠, Ω3 = 3.6𝜋𝜋 × 103 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠,

Ω4 = 4.8𝜋𝜋 × 103 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠, and the sampling frequency is 𝑓𝑓𝑠𝑠 = 1/𝑇𝑇𝑠𝑠 = 6 × 103 𝐻𝐻𝑧𝑧.

Plot 𝑥𝑥[𝑛𝑛] over the range 0 ≤ 𝑛𝑛 ≤ 200 and plot �𝑋𝑋(𝑒𝑒𝑗𝑗𝑗𝑗)� over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

(h) Plot 𝑦𝑦[𝑛𝑛] over the range 0 ≤ 𝑛𝑛 ≤ 200 and plot �𝑌𝑌(𝑒𝑒𝑗𝑗𝑗𝑗)� over the range −𝜋𝜋 ≤ 𝜔𝜔 ≤ 𝜋𝜋.

(i) According to the results of part (h), explain the difference between 𝑥𝑥[𝑛𝑛] and 𝑦𝑦[𝑛𝑛] and

determine whether the aliasing phenomenon occurred or not.

48 | P a g e

Lab 5. Signal Restoration and Filter Design

Objectives
• In this lab experiment, you will learn how to use LTI filters as signal restoration tools and

how to use MATLAB for designing filters.

Signal Restoration
“Signal Restoration” usually refers to the enhancement or improvement of signals that have been

degraded in some way, for example, through noise or echo. Signal restoration recovers a signal

from a degraded version. It is a fundamental problem in signal processing, and it also provides a

testbed for more general inverse (or recovery) problems, that is, problems for which information

that is lost (due, for example, to transmission or compression), is attempted to be recovered. Key

issues that need to be addressed are the quality of the restored signal, the computational complexity

of the solution (algorithm), and the estimation of necessary parameters such as those of the impulse

response (or the point-spread function PSF). To restore a signal, we need to design a filter suitable

for the problem to solve. To measure restored signal quality, we need to design objective quality

measure.

Objective Quality Measurement
A corrupted signal is degraded version of the original. For each corrupted (noisy and echo) signal

we would like to quantify how much corruption has taken place. A common measure of

degradation is Mean Squared Error (MSE). If we have a signal 𝑥𝑥[n] and the same signal corrupted

by some way called 𝑥𝑥_𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑠𝑠𝑡𝑡 [𝑛𝑛], each of length 𝑁𝑁, then the following is the 𝑀𝑀𝑀𝑀𝑀𝑀

Equation 5-1:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝑥𝑥[𝑛𝑛] − 𝑥𝑥𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡[𝑛𝑛]�2
𝑁𝑁

𝑛𝑛=1

Where the lower the MSE value the better the signal quality. We can also measure signal quality using the

Signal to Noise Ratio (SNR) in decibels (dB), where 0.5 to 1 dB is said to be a perceptible difference

49 | P a g e

between two signals. The SNR indicates the strength of the signal with respect to the distortion (such as the

noise or echo) power and is defined as

Equation 5-2:

𝑀𝑀𝑁𝑁𝑅𝑅 = 10𝑠𝑠𝑟𝑟𝑔𝑔 ∑ |𝑥𝑥[𝑛𝑛]|2𝑁𝑁
𝑛𝑛=1
𝑀𝑀𝑀𝑀𝑀𝑀

.

The higher the SNR value the better the signal quality.

MATLAB’s Filter Designer tool

In order to restore a signal corrupted in some way, say noise or echo, we need to develop an

appropriate filtering operation. The Filter Designer tool in MATLAB is a powerful user interface

for designing and analyzing filters quickly. It enables you to design digital FIR or IIR filters by

setting filter specifications, by importing filters from your MATLAB workspace, or by adding,

moving or deleting poles and zeros. Filter Designer also provides tools for analyzing filters, such

as magnitude and phase response and pole-zero plots. Filter Designer seamlessly integrates

additional functionality from other Mathworks products. To use the Filter Designer in MATLAB,

type in command window

>>filterDesigner

Filter Designer will be opened. You can select FIR or IIR filter, order of filter, and cutoff frequency

of a filter (either HPF, LPF or BPF). That code will automatically generate .m file for you.

An introduction to the Filter Designer tool is reproduced in FilterDesignerMATLAB.pdf in

“Data_for_DSP_Labs” “Lab 5” folder, and is available online here

https://www.mathworks.com/help/signal/examples/introduction-to-filter-designer.html, which is

Lab Problems
 Problem 1.

(a) In the folder “Data_for_DSP_Labs”“Lab5”, you find a file with the name

“HappyBirthday.wav”, which is a noise-free audio signal. Write a MATLAB code to read

this signal. Add Gaussian noise to it with mean equal to zero and variance equal 𝜎𝜎2, that

is, if your original noise-free signal is 𝑥𝑥[𝑛𝑛] then the noisy signal 𝑥𝑥𝑛𝑛𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] + 𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝑒𝑒.

https://www.mathworks.com/help/signal/examples/introduction-to-filter-designer.html

50 | P a g e

Create 3 noisy signals with different variances 0.1, 0.3, and 0.5. Listen to all generated

noisy signals and finally save all of the noisy signals with meaningful names.

Hint 1: In order to generate a Gaussian noise with length “𝐿𝐿”, mean “𝑚𝑚” and variance

“𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝑒𝑒_𝑣𝑣𝑎𝑎𝑟𝑟”, you can use the following code segment:

noise = sqrt(noise_var) * randn(L, 1) + m; %Generate a Gaussian noise
with variance "noise_var" and mean "m"

Hint 2: In order to process audio signals you may need to use these MATLAB functions:

audioread, audiowrite, soundsc, and pause [3].

(b) Determine the MSE between the original signal and the noisy signals you generated in part

(a). What is the relationship between the computed MSEs and the variance of each

Gaussian noise signal?

(c) Write a MATLAB code to read the noise-free signal in part (a) and add three different

Gaussian noise signals with the SNRs (Signal-to-Noise-Ratio) [10 5.22 3.01].

Hint 1: In order to add a Gaussian noise to a signal with requested SNR you can use awgn

MATLAB function as follow:

s_noisy = awgn(s, SNR); %Add Gaussian noise with requested SNR to s

Hint 2: For this purpose you can also use the following code segment:

sigPower = 1; %Signal power supposed to be 1
noisePower = sigPower / (10 ^ (reqSNR / 10)); %Power of the noise
signal considering the requested SNR
noise = sqrt(noisePower) * randn(1, L); % Noise signal of size L
x = x + noise; %Noisy signal with requested SNR

(d) Determine the MSE between the original signal and the noisy signals you generated in part

(c). Derive the relationship between requested SNR and noise variance (use Hint 2 of

part(c)). What is the relationship between the computed MSEs and the variance of each

Gaussian noise?

Hint: Using Hint 2 of part (c), if we consider “𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟” as the “𝑉𝑉𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑒𝑒” of the

noise we can derive a logarithmic formula which relates the requested 𝑀𝑀𝑁𝑁𝑅𝑅 to the noise

𝑉𝑉𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑒𝑒.

(e) In the “Data_for_DSP_Labs”“Lab 5” folder, there is a file with the name

“HappyBirthday_Echo.wav” which is the echo corrupted signal of the original music

signal. Determine the MSE between the original signal and this echo corrupted signal.

51 | P a g e

 Problem 2.

One method to reduce noise is applying a low-pass filter on the noisy signal. For each of the

noisy signals created in Problem 1 parts (a) and (c), try to recover the original signal by

designing an LTI lowpass filter using the MATLAB Filter Designer tool. Your LTI filter will

take the corrupted signal as input. The output should be as close to the original signal as

possible. Use MSE as a quality measure for this task and state the MSE that you obtain with

your filter. Do the following

(a) Design your system using an FIR filter of length 40 with normalized 𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = 0.3,

and 𝑒𝑒𝑠𝑠𝑡𝑡𝑟𝑟𝑠𝑠 = 0.35.

(b) Design your system using an IIR Butterworth filter of length 40 with normalized 𝑒𝑒𝑠𝑠 =

 0.3.

(c) Design your system using any filter you want. Try to reach less MSE than in parts (a)

and (b).

Hint: In order to employ your designed filter via Filter Designer you can select export from

file menu of “Filter Designer” window, and then set the parameters Export To: “MAT-File”,

Export As: “Objects”, and finally determine the name of Discrete Filter (which is Hd by

default) and then save it in your workspace as MAT-file (for example, myFilter.mat). Now for

applying the filter on your input signal you can use the following code:

load myFilter.mat; %Your designed discrete filter (Hd) using
filterDesigner will be loaded
s_filtered = filter(Hd, s_noisy); %Filter the noisy signal (s_noisy)

 Problem 3:

A method to recover the echo corrupted audio signal in Problem 1 part (e) will be explained

next. If the original audio signal is 𝑥𝑥[𝑛𝑛], in order to model the echo corrupted audio signal

𝑥𝑥𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡[𝑛𝑛], we can add a shifted version of the input signal 𝑥𝑥[𝑛𝑛 − ∆] attenuated by 𝛼𝛼 as follow

Equation 5-3: 𝒙𝒙[𝒏𝒏] + 𝜶𝜶𝒙𝒙[𝒏𝒏 − ∆] = 𝒙𝒙𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒖𝒖𝒄𝒄𝒕𝒕[𝒏𝒏]

The Z-transform of the above equation will be:

Equation 5-4:

𝑋𝑋(𝑍𝑍)�1 + 𝛼𝛼𝑍𝑍−∆� = 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡(𝑍𝑍) → 𝑋𝑋(𝑍𝑍) =
𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡(𝑍𝑍)
(1 + 𝛼𝛼𝑍𝑍−∆)

52 | P a g e

According to Equation 5-4, in order to recover 𝑋𝑋(𝑍𝑍), we can filter 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡(𝑍𝑍) by 1
�1+𝛼𝛼𝑍𝑍−∆�

which is an IIR filter (see Example 2 of Lab 2). But we need to find the value of 𝛼𝛼 and ∆. 𝛼𝛼 is

an attenuation parameter and should be less than 1 (for example, 0.5). For finding the value of

∆ we can use autocorrelation. To compute an unbiased estimate of the signal autocorrelation

that corresponds to lags greater than zero we can use the following code segment, where Fs is

the sampling frequency:

[R, lags] = xcorr(x_corrupt, 'unbiased');
R = R(lags > 0);
lags = lags(lags > 0);
plot(lags / Fs, R)

The autocorrelation has a sharp peak at the lag (∆) at which the echo arrives; the lag can be

found according to the following code segment:

[~, delta] = findpeaks(R, lags, 'MinPeakHeight', 0.08);

In the above code, findpeaks returns only those peaks higher than ‘MinimumPeakHeight’

(0.08), which can be seen checking the autocorrelation plot for this specific audio signal.

After calculating the value of ∆ (‘delta’), according to Equation 5-4 the nominator and

denominator coefficients of this IIR filter are now determined. Apply this filter on 𝑥𝑥𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡[𝑛𝑛]

using the MATLAB function filter (similar to Example 2 of Lab 2). Calculate the MSE as

a quality measure for this task and state the MSE that you obtain with this filter. Listen to the

recovered signal and finally save it as an audio file with name “recovered_from_echo.wav”.

53 | P a g e

References
[1] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, 2nd ed. Englewood Cliffs,

NJ: Prentice-Hall, 1989.
[2] Signals and Systems, 2nd ed. , A.V. Oppenheim and A.S Willsky, Prentice-Hall, ISBN 0-13-

814757-4, 1997.
[3] https://www.mathworks.com/help/pdf_doc/signal/signal_tb.pdf

Acknowledgment

Thank you to students, teaching assistants, lab coordinators, and course instructors for their

comments and suggestions that helped to improve this lab manual over the years. The 2019

revision was assisted by Muhammad R. Pourshahabi. An early version of the DSP lab manual was

coordinated by Dr. Rajeev Agarwal in 1994.

Latest revision: June 20, 2019

https://www.mathworks.com/help/pdf_doc/signal/signal_tb.pdf

	Submission Instructions
	Lab 1. Linear Constant Coefficient Difference Equations (LCCDE)
	Objectives
	Introduction
	LTI System as a Filter
	The Impulse Response
	Finite Impulse Response (FIR) Systems
	Infinite Impulse Response (IIR) Systems
	Solution of an LCCDE Using MATLAB

	Lab Problems

	Lab 2. The Fourier Transform and the Z-Transform
	Objectives
	Signal Acquisition
	The Fourier Transform: The Spectrum of a Signal
	Lab Problems I
	The Z-Transform
	Lab Problems II
	The Frequency Response from the Z-Transform
	Lab Problems III

	Lab 3. The Sampling Theorem
	Objectives
	Sampling Issues
	Periodic Sampling
	Nyquist Theorem
	Reconstruction
	Lab Problems

	Lab 4. Multirate Digital Signal Processing
	Objectives
	Key Issues
	Downsampling and Decimation
	Upsampling and Interpolation
	Sampling Rate Conversion
	Lab Problems

	Lab 5. Signal Restoration and Filter Design
	Objectives
	Signal Restoration
	Objective Quality Measurement
	MATLAB’s Filter Designer tool
	Lab Problems

	References
	Acknowledgment

