Feature Toggles: Practitioner Practices and a Case Study

Md Tajmilur Rahmant, Louis-Philippe Querel’, Peter C. Rigbyf, Bram Adams?
 Concordia University, ¢ Polytechnique Montreal
Montreal, QC, Canada
{mdt_rahm, |_querel}@encs.concordia.ca
peter.rigby@concordia.ca, bram.adams@polymtl.ca

ABSTRACT

Continuous delivery and rapid releases have led to innovative
techniques for integrating new features and bug fixes into
a new release faster. To reduce the probability of integra-
tion conflicts, major software companies, including Google,
Facebook and Netflix, use feature toggles to incrementally
integrate and test new features instead of integrating the
feature only when it’s ready. Even after release, feature
toggles allow operations managers to quickly disable a new
feature that is behaving erratically or to enable certain fea-
tures only for certain groups of customers. Since literature
on feature toggles is surprisingly slim, this paper tries to
understand the prevalence and impact of feature toggles.
First, we conducted a quantitative analysis of feature toggle
usage across 39 releases of Google Chrome (spanning five
years of release history). Then, we studied the technical debt
involved with feature toggles by mining a spreadsheet used
by Google developers for feature toggle maintenance. Finally,
we performed thematic analysis of videos and blog posts of
release engineers at major software companies in order to
further understand the strengths and drawbacks of feature
toggles in practice. We also validated our findings with four
Google developers. We find that toggles can reconcile rapid
releases with long-term feature development and allow flex-
ible control over which features to deploy. However they
also introduce technical debt and additional maintenance for
developers.

1. INTRODUCTION

In recent years, one of the top priorities of many companies
and organizations has been to re-engineer their release pro-
cess in order to achieve continuous delivery of new features
or at least more timely releases [4, 27]. While traditional
releases would take months, modern software companies
have managed to reduce their apps’ “cycle time” to 6 weeks
(Google Chrome [39] and Mozilla Firefox [40]), 2 weeks (Face-
book Mobile app [36]) or even daily (Facebook web app [36],
Netflix [37] and IMVU [20]). Successful migration towards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. .. $15.00

DOL http://dx.doi.org/10.1145,/2901739.2901745

continuous delivery requires streamlining all release engineer-
ing activities [2].

One of the most unpredictable release engineering activi-
ties is the integration process |6]. During integration, new
features and bug fixes are combined with the latest code
from other teams (e.g., by merging git branches [8]) to create
a coherent new release. Integration is unpredictable because
the combination of many changes late in the develop cycle
can lead to instability in the software [30]. Stabilization of
such changes can take substantial time, leading to even larger
gaps between the latest development and the release stabi-
lization branch. These incompatibilities (“merge conflicts”)
only surface at integration or testing time, which is close to
release time, and hence introduces delays. Such delays are
incompatible with continuous delivery.

Although substantial research has been done on predict-
ing painful merges and quantifying the effort involved in a
merge |9} |12, (14} |41], release engineers of Facebook, Google
and Netflix in their talks at the 2nd International Workshop
on Release Engineering (RELENG) |1] instead declared that
they simply try to merge more rapidly, effectively integrating
partial (work-in-progress) versions of a feature into the code
base instead of waiting for the complete feature. When we
asked these workshop participants, “if you are integrating in-
complete features, how do you prevent them from interfering
with other features?”, they unequivocally replied “by using
feature toggles’ﬂ

A feature toggle is an age-old and conceptually simple
concept [4, [33]. It basically is a variable used in a con-
ditional statement to guard code blocks, with the aim of
either enabling or disabling the feature code in those blocks
for testing or release. For example, in the if
statement checks the value of the Google Chrome toggle
kDisableFlashFullscreen3d. If the toggle is present in the
Chrome configuration, the return statement ensures that the
remainder of the method is not executed, effectively disabling
the 3D flash feature. In contrast to traditional compile-time
feature toggles |7} |15} |16] that exclude features from an ap-
plication’s binary altogether, modern feature toggles allow
features to be switched on or off without recompilation, i.e.,
at run-time or at least at startup-time.

Despite the conceptual simplicity of feature toggles, they
also contain risk. Each toggle basically “comments out” large
blocks of code (features) that are not yet ready for testing,
release or should be used only by a small number of users.
This leads to partially dead code and hence technical debt,
unless features are made permanent (by removing their if

1Sometimes also called “flippers”, “switches” or “gates”.

http://dx.doi.org/10.1145/2901739.2901745

statements) as soon as they are stable. Furthermore, as the
number of feature toggles grows, there is a combinatorial
explosion of possible feature sets that need to be tested,
as an organization could pick any combination of features
for their next release. Large companies such as Facebook,
Yahoo, Google and Adobe are cognizant of some of these
problems, but similar to small and medium sized software
companies, it is unclear to them what is the long-term impact
of feature toggles and what best practices exist.

Although toggles are used extensively in industry, we are
unaware of any empirical study that examines how feature
toggles actually are being used in the software industry.
Hence, we conducted a mixed-methods study to provide a
better understanding of feature toggles and their benefits
and risks.

In the first stage, we measure the following basic parame-
ters in an exploratory study of toggle use on Chrome:

1. Adoption: How many toggles exist?
2. Usage: How are toggles used?

3. Development Stage: Are toggles modified during devel-
opment or release stabilization?

4. Lifetime: How long do toggles remain in the system?

In the second stage, we examine toggle maintenance and
debt by studying the impact of a toggle maintenance cam-
paign launched by Chrome developers. In the third stage, we
complement and generalize our Chrome results by examining
the talks and writing of prominent release engineers of large
successful companies including Twitter, Facebook, Google,
etc.

The paper is structured around these research stages. In
we define feature toggles and give examples of

actual toggles on the Google Chrome projects. In
we describe our mixed methods research approach and the

three data-sources that we use in our study. In we
conduct an exploratory case study to measure the adoption,
usage, development stage, and lifetime of toggles. We also
discuss the lifecycle of toggles on Chrome. In we
describe toggle debt and the toggle maintenance campaign
and the types of toggles used on Chrome. In we
use the talks and blog posts of developers on other large
successful projects to generalize our understanding of toggle
use. In we discuss threats to validity. In
we conclude the paper, tying together our findings from our
various data sources, and we discuss future work.

2. TOGGLE BACKGROUND AND EXAM-
PLE

According to Martin Fowler, there are two types of feature
toggles: business and release toggles . A business toggle is
used to “selectively turn on features in regular use”, without
requiring re-compilation. The most basic way to do this
at program start-up is via command line switches, while
more advanced systems allow features to be turned on at
run-time. For example, the Google Chrome browser provides
the chrome://flags web page that allows some of the features
to be enabled or disabled without recompilation.

In contrast to business toggles, release toggles are a rela-
tively recent phenomenon that Fowler describes as originating

& compositor_switches.cc (chrome/ui/compositor)

&content_switches.cc (chrome/content/public/common)

#gaia_switches.cc (chrome/google apis/gaia)
(a)

107 // Disable 3D inside of flapper.
108 const char kDisableFlash3d[]
109

110 // Disable using 3D to present fullscreen flash

111e const char kDisableFlashFullscreen3d[] = "disable-flash-fullscreen-3d";

(b)

4520 if (command_line->HasSwitch(switches::kDisableFlashFullscreen3d))
453 return;
(c)

Figure 1: Examples of Chrome 23, showing (a) the names
of known switch files, (b) example toggles inside con-
tent_switches.cc, and (c) code that is covered by the toggle
kDisableFlashFullscreen3d.

= "disable-flash-3d";

from the move towards continuous delivery of software sys-
tems . With increasingly shorter release cycles, features
are developed behind release toggles such that they can easily
be disabled if the feature is not yet ready for release. This
flexibility allows release engineers to disable a feature that is
blocking a release simply by disabling the feature toggle. In
addition, Bass et al. promote the use of release toggles to
decouple the roll-out of a new feature to data centers from
the actual release of the feature to (subsets of) users. In this
paper, we focus on both kinds of feature toggles.

From a practical perspective, Fowler states that feature
toggles require the following :

1. A configuration file with all feature toggles and their
state (value).

2. A mechanism to switch the state of the toggles (for
example, at program startup or while the application
is running), effectively enabling or disabling a feature.

3. Conditional blocks that guard all entry points to a
feature such that changing a toggle’s value can enable
or disable the feature’s code.

To illustrate Fowler’s requirements, we use Google Chrome’s
toggle implementation. Chrome is a popular, large open
source project that has been using feature toggles for more
than five years and that we use as case study in this pa-
per. Instead of having a single configuration file for toggles,
Chrome has multiple “switch files” representing toggleable
sets of related features, see For example, there
are switch files for features related to how content is dis-
played in Chrome (content_switches.cc) or to GPU testing
(test_switches.cc).

Each switch file contains a set of feature toggles that can
be enabled or disabled. In Chrome, feature toggles are strings
that can be set or unset. For example, shows the
definition of the toggle kDisableFlashFullscreen3d. When
activated, this toggle disables the feature that renders graph-
ics in 3D when flash content is presented full-screen. Ad-
vanced users might use this toggle to improve performance [5].
These feature toggles are then used inside conditional state-
ments, as shown in If the toggle kDisableFlash-
Fullscreen3d has been set a return statement exits the
method without executing the 3D rendering feature.

3. METHODOLOGY AND DATA

In order to address our research questions, we use a mixed
methods research approach that uses three separate data
sources and methodologies [42]. Since there is little written
in the scientific literature on feature toggles, we first conduct
a quantitative case study on Google Chrome to answer basic
quantitative research questions such as the prevalence and
lifetime of feature toggles. At the time that the study was
conducted we were not able to collect other opend source
project that are using feature toggles. In discussions with
Chrome developers, they told us of a toggle maintenance
campaign in which toggles were categorized to determine
if they were technical debt. The campaign resulted in a
spreadsheet [28] that we were able to mine to get a more
fine-grained understanding of the types of toggles.

To analytically generalize our quantitative case study find-
ings [43] and discuss them in a larger context, we used the-
matic analysis to code the talks and writings of well-known
release engineers working at large successful companies. This
analysis helped us to expand and triangulate our single case
study with descriptions of how practitioners at other compa-
nies use toggles, as well as to identify costs and benefits of
using toggles. Finally, we also employ member checking to
validate both our qualitative and quantitative findings with
four Chrome developers. We now describe the methods and
data used in our study in more detail.

3.1 Mining Chrome’s Version History

First, we conduct an exploratory case study of the Google
Chrome project to quantify the use of toggles. We selected
the Chrome browser because it extensively uses toggles, in
total we found over 2.4 thousand distinct toggles. Since most
of the developers on Chrome are paid by Google and work in
Montreal, we were able to member check our findings with
Google developers who also use toggles internally on Google
projects.

We mined the Google Chrome development history from
2010 to 2015, which covers 39 releases from release 5 to 43.
Our main data source was the git version control system of
Chrome, in which official releases are tagged. To identify
toggles, we manually examined the Chrome source code and
found that developers manage such toggles in files whose
name ends with switches.cc and switches.h (as Chrome
developers refer to toggles as either switches or flags). Each
individual toggle is defined in a switch file. We then parsed
the source code to identify how often each toggle is used. For
each commit, we determined changes in toggles, i.e., addition,
removal and modification of toggles. We recorded the date of
these changes to allow us to extract the chronological order
of toggle changes.

We provide basic quantitative results in terms of how many
toggles are in use as well as more sophisticated analyses such
as a survival curve indicating how long toggles survive across
time.

3.2 Mining Toggle Maintenance Spreadsheet
of Chrome

A toggle maintenance campaign was launched on Google
Chrome at release 35. This maintenance effort gave us a
unique opportunity to study the technical debt associated
with toggles (from the perspective of Chrome developers)
and to get a more fine-grained classification of toggles. It
also helped to explain anomalies that we observed in our

version history data at release 35.

We based our analysis on the official toggle maintenance
spreadsheet created by Chrome developers in March 2014,
and still maintained at the time of writing |28|. For each
toggle, this spreadsheet contains its name, the feature set file
name, the owner of the toggle, the status of the toggle (“To
keep”, “To Remove”, “Removed”, “Keep”, and “Untriaged”),
any associated bugs, and a comment from the owner about
the purpose of the toggle. By examining the latter “purpose
of toggle” field, we were able to identify three major toggle
types: long-term, development and release. We created a
survival curve for each toggle type, showing how many toggles
had a lifetime of 0, 1, 2, etc. releases.

3.3 Thematic Analysis of Practitioners’ Talks
and Writings

Feature toggles come from industry, not research, hence
there is very little research literature on toggles. Practitioners
tend to share ideas via conference talks and short blog posts
instead of writing detailed technical research papers. We
collected data from the recorded talks of sixteen prominent
release engineers at 13 large successful companies. To select
this material, we examined all the talks and short papers from
the three editions of the RELENG international workshop on
Release Engineering |1]. We then performed individual online
searches with the following four terms: “feature toggles”,
“feature flags”, “feature switches”, and “feature flippers.”

After eliminating irrelevant content (i.e., non-SE hits and
pages only mentioning feature toggles in passing), our final
list included 17 talks and blog posts from the following 13
companies: Google, Facebook, Yahoo, Flickr, Netflix, Lyris,
BIDS Trading Technologies, Indeed.com, Harel-Hertz Invest-
ment House Ltd., IMVU, ThoughtWorks, Rally Software and
Adobe. In the references for each of these talks and blog
posts, we mention the job title of the author to indicate his or
her level of expertise. For example, we examined talks from
Paul Hammond (3], who runs the Engineering group at Flickr,
and Chuck Rossi [36], who leads the release engineering team
at Facebook.

To uncover emergent abstract themes in the blog post and
talks, we used a simple thematic analysis to extract the main
uses, benefits, and costs noted by these engineers |22, |42].
The specific steps we used are as follows:

1. First, we printed blog posts and paraphrased talks. For
the talks, we included timing information to have a
direct link to the original evidence.

2. To code the artifacts, we wrote notes in the margins.
We cut the printed material to divide it into separate
groups of emerging codes. We then progressively re-
peated this grouping and comparison step, attaining
more abstract codes that we recorded on memo pads.

3. We continued to sort, compare, group, and abstract
codes until we obtained a set of high-level themes that
can each be traced back to practitioner statements, and
explain how practitioners perceive the use of feature
toggles.

3.4 Member Checking of Findings

Finally, we validated both our qualitative and quantitative
results using member checking [42]. We sent the manuscript
to four Google Chrome developers to check that the number

of toggles we were reporting agreed with their intuition. We
also met with them in person. One of the developers pointed
out an error in our understanding of a toggle’s state, which
lead to a correction in our measures.

4. EXPLORATORY QUANTITATIVE STUDY
OF TOGGLES ON CHROME

In this section, we conduct an exploratory case study of
Google Chrome to quantify the basic characteristics of toggles.
To give context to our quantitative results, we also describe
the life cycle of a toggle according to our discussions with
Chrome developers. We quantify the following:

1. Adoption: How many toggles exist?
2. Usage: How are toggles used?

3. Development Stage: Are toggles modified during devel-
opment or release stabilization?

4. Lifetime: How long do toggles remain in the system?

4.1 The Lifecycle of a Toggle on Chrome

Feature toggles were introduced to Chrome development
to help with release slips. The goal was to integrate all code
up front, then disable code on the release branch that was
not yet ready for release [30]. Toggles have the following life
cycle:

1. With each new feature a toggle is created to allow
developers to enable or disable the feature.

2. By default, the code for the new feature is merged
into the organization’s common development branch
(trunk), but the feature is toggled “off”. Toggles allow
the new feature code to be merged with the existing
code, but without necessarily having the feature active
(being tested).

3. When the developer feels that the feature is working,
the feature is toggled “on” by default on the develop-
ment trunk, making the feature active in all compila-
tions and tests.

4. Every 6 weeks, a new release stabilization branch is
created from the development trunk. The release team
discusses each new feature with the author to determine
if the feature is ready for release. Only those features
that are ready for release stabilization are toggled “on”
for the stabilization branch (and which will likely be
released to the public).

5. If a feature becomes unstable during stabilization test-
ing and use, the feature is toggled “off” on the stabiliza-
tion branch. In such cases, toggles allow the feature
code to remain deactivated in the code base.

6. After a feature is released and has proven to be stable
in production, either (1) the toggle itself and any old
feature code that is no longer necessary can be removed,
or (2) if the old and new feature code satisfy differ-
ent business use cases, the toggle code is kept. Case
(1) happens in case of a release toggle, while case (2)
happens for a business toggle.

800 1000
\\
/ e

600
s
AN

Number of Toggles
S

400
I

10 20 30 40
Releases

Figure 2: Number of unique toggles per release of Google
Chrome.

50

-50
|

Releases

Figure 3: Change in number of unique toggles across releases
of Google Chrome. A negative value means that a release
has less toggles than the previous one.

Given that feature toggle may be removed after it is deemed
that the feature is ready, not all features will therefore have
a respective toggle in a release. If two features are inter-
dependent, the corresponding toggle should preferably be
interdependent as well.

4.2 Adoption: How many toggles exist?

shows that the number of toggles has grown
rapidly since their introduction. At Chrome’s 5th release

there were 263 toggles compared to 1,040 toggles at the
42nd release. Across all 39 releases, a total of 2,409 distinct
toggles have been used, 70% of which were removed at some
point. To understand the evolution of the number of toggles,
shows for each release the relative change in number
of toggles compared to the previous release.

The total number of toggles is growing with a median
increase of 30 toggles per release. Each release sees a median
of 73 added and 43 removed toggles. The increase initially

fluctuates around 15 toggles per release, then varies between 3
and 50, before stabilizing on about 25 new toggles per release
right before release 35. It is clear that the maintenance effort
started in release 35 had an immediate effect reducing the
number of overall toggles. However, the campaign to remove
obsolete toggles lost its momentum at release 39 where the
number of toggles returned to historical levels.

From these numbers, it is clear that after their introduction
by Chrome release Engineer Laforge [30], toggle use grew
rapidly as developers were required to place new features
behind toggles. The increase of toggles and the long term
ineffectiveness of the toggle maintenance campaign indicates
a potential for toggle debt in the form of obsolete toggles,
which we discuss later.

The number of toggles increases linearly over time, ex-
cept for a period of active maintenance at release 35.

4.3 Usage: How are toggles used?

Toggles can be used directly in a conditional statement
to guard a code region related to a particular feature, or
can be assigned to a variable that is used later on in some
conditional statement. The direct usage in a conditional,
such as an if statement that enables or disables a section
of code, is the most common (see [Figure 4)). Such toggles
account for between 66 and 70 percent of the total toggles
contained in a release.

Toggles can also be assigned to a variable to allow for more
flexible and complex usages. For example, lines 454 to 456 of
[Figure 5|show how the state of two toggles (obtained through
a call of the method “HasSwitch”) is disjuncted together and
assigned to a variable. The resulting variable repeatedly can
be used to adjust the behaviour of the system. Alternatively,
inthe result of a logical toggle expression is returned
as is.

These variable assignments and helper methods account
for more than 30% of the toggle usages in a release and are
more complex than direct use in a conditional. The most
complex example that we found involved the assignment
of a toggle to a member variable in a class. The class’s
objects then behave depending on the state of the toggle.
Chrome developers confirmed these complex usages and also
noted that toggles can be used to change or remove entire
Chrome extensions. Complex toggle usages make it difficult
to determine the sections of code covered by toggles and
advanced dynamic parsing techniques are necessary to fully
understand the benefits and risks of toggle that are assigned
to variables.

Most toggles are used directly in a conditional, however,
at least 30% of toggles are assigned to a variable to allow
them to significantly change the behaviour of Chrome,
which complicates maintenance.

4.4 Development Stage: Are toggles modified
during development or release stabiliza-
tion?

Google releases new versions of Chrome every six weeks [39].

At the end of each development cycle, a feature freeze is
imposed (no more new feature development) and a small

§ 4 total /
o conditional //\ _
variable , N
/
o //
o |
2 & /
o e
& yd
2 o
L O |
oy
S
=
5 -
5 2 -
Qo 2 v
= /
>
P4
o
S |
w0
=4 T T T T
10 20 30 40
Releases

Figure 4: The total number of times toggles are used per
release of Google Chrome as well as the type of usage: direct
conditional or variable assignment.

453 base: :CommandLine* cmdline = base::CommandLine::ForCurrentProcess();

454 config.disable_auto_update =

455 cmdline->HasSwitch(switches::kSbDisableAutoUpdate) ||

456 cmdline->HasSwitch(switches::kDisableBackgroundNetworking);

457 config.url_prefix = kSbDefaultURLPrefix;

458 config.backup_connect_error_url_prefix = kSbBackupConnectErrorURLPrefix;
459 config.backup_http_error_url_prefix = kSbBackupHttpErrorURLPrefix;

460 config.backup_network_error_url_prefix = kSbBackupNetworkErrorURLPrefix;

Figure 5: Toggles used in a logical expression with
the result assigned to a configuration object. The
resulting configuration object then is returned in
chrome/browser /safe_browsing/safe_browsing service.cc of
release 43.

group of maintainers determines which features are ready
to be officially released. Features not ready for release are
turned off before the code is sent to the stabilization channel
to prepare for production. To determine which toggling
events happen during active development and which ones
during pre-release stabilization, we separated development
commits (before feature freeze) from stabilization commits
(after feature freeze) and analyzed which commits change
the values of toggles [34].

From the 5k commits that introduce, remove, or change the
value of a feature toggle, we found that 97% of the toggling
events occur during development, while only 3% occur during
release stabilization. If we exclude introduction, removal and
renaming of toggles, the percentage of commits with toggling
events during development becomes 99%.

These results confirm that toggling is mostly used during
development to isolate works-in-progress from other develop-
ers, while only some toggling occurs to remove features that
became unstable. Since the author and release team meet
to determine whether a feature should be enabled for the
next release stabilization branch, most features going into
stabilization will be stable by design. Since toggles are de-
signed to be disabled, it is much easier to disable an unstable
feature than it is to physically revert the set of changes that
compose a feature. In the past (in the absence of feature
toggles), such reverting had led to a large number of patches
during stabilization and delayed releases [30].

99 return command_line.HasSwitch(switches: :kInProcessPlugins) ||
100 command_line.HasSwitch(switches::kSingleProcess);

Figure 6: Toggle return in chrome/content/renderer/ren-
der_process_impl.cc of release 29.

100
I
°

80

|

[
0o— « 0o

Percentage of Surviving Toggles
40 60
I I
o
°
o
o+ o
6o o
° o
o+ o
o+ o
°
oo
oo
oo
oo
o0
o—+—o
o0
o+ ——0
o+
o——+——o0
o0
o0
o——+—0
o0
o0
o —0
6—+—0
o—+—0
o—+—0
o0
o——o0
o——0
00
o0

20
|

Number of Releases

Figure 7: Survival curve showing the percentage of toggles
that remain in the code base for 1, 2, ..., 38 releases of
Google Chrome. Each vertical bar spans between the 5th
and 95th percentile, with the average as the middle point.

Most toggle changes occur during development, only 3%
of all toggle changes happen during release stabilization.

4.5 Lifetime: How Long do Toggles Remain
in the System?

The Google Chrome developers we talked to measured
toggle lifetime in terms of number of releaseﬁEI, not days or
weeks. As a result, we measure the number of releases a
toggle survives in Chrome as the toggle lifetime.
shows the minimum number of releases a toggle survives for
from 1, 2, up to 38 releases, with the X axis representing
the number of releases and the Y axis the percentage of
toggles that survived at least that many releases (i.e., a
toggle that survived for 3 releases is also counted for 1 and 2
releases). Each vertical bar represents the distribution from
the 5th percentile to the 95th percentile, while the middle
point represents the average percentage of toggles that have
survived.

On average 72% of the toggles survive 5 or more releases.
At two releases, the survival rate is on average 89%. It takes
6 releases before the average percentage of surviving toggles
drops below 70%, 12 releases to drop below 50% and 31
releases to drop below 30%. There is a long tail of toggles
that have survived the entire 5 years covered by this study.
At 30% the curve stabilizes due to the low number of data
points (only release 5 could have toggles surviving for 38
releases, which is the sole data point for X=38). Hence,
the averages do not follow a monotonically decreasing trend,
especially for the last seven observations (which have 7 or
less data points each).

2There is a new release approximately every six weeks.

Table 1: Prevalence of each toggle type according to the
toggles mentioned in the Chrome spreadsheet [28].

Type Count Goal
Development tog- 254 testing and debugging
gles

Long-term busi- 253

ness toggles

Release toggles:
- in use 160
- cleaned up 51
- technical debt 44

advanced functionality and
platform variability
work-in-progress toggles
guarding unstable features
features have become stable
debt, not yet removed

On average 18% of toggles added for a release were removed
before the release shipped, while for some releases up to 69%
of toggles did not survive the release. The Google Chrome
developers confirmed our findings, however they indicated
that not all toggles are equal. As we will discuss later, some
toggles are intended for long-term use, e.g., they represent
some toggleable business function, others are intended to
be removed after the feature has stabilized, and others are
introduced for a period of less than a release to isolate works-
in-progress.

In general, the lifetime for toggles is long, with half of
the toggles surviving 12 or more releases.

5. TOGGLE DEBT

Having quantified the prevalence and lifetime of toggles,
this section uses data about the maintenance campaign that
started at release 35 as an opportunity to study the technical
debt created by feature toggles and the extent to which this
debt was resolved. Furthermore, the results help us under-
stand how Chrome developers discuss and categorize toggles.
We based our analysis on the official spreadsheet [28] created
by Chrome developers in March 2014 (and still maintained
at the time of writing this paper).

From the spreadsheet, we identified three major contexts
in which toggles are used in Chrome: (1) development tog-
gles, which included toggles for testing and debugging; (2)
long-term business toggles, which toggle different features to
different users; and (3) release toggles, which allow for the
gradual roll-out of new features to ensure a feature is ready
for production.

Development and long-term toggles are the most common
kind of toggle. Development toggles are toggles that help
developers to easily enable/disable certain features for testing
and debugging, as well as generate diagnostics for error han-
dling. In contrast, long-term toggles are used for configuring
the platform on which Chrome will be running, business
toggles related to privacy settings, and release toggles that
have been converted into business toggles.

160 release toggles were marked as currently active, while
51 had been removed during the maintenance campaign and
44 still awaited removal. In contrast to the development
and long-term toggles, release toggles guard features that
are work-in-progress, are experimental or just workarounds
for existing bugs. Although 84 of such toggles had been
marked as “To remove” in the spreadsheet (their feature had
become permanent), and 11 toggles had been marked as
“Removed”, only 51 (20% of all release toggles) had actually

o
S
- —— Dev Toggles
rrrrr Longterm Toggle:
Release Toggles
o |
[¢°)
0
o
3
o
2 @
—
o
()
()]
8o |
c <
(9}
o
=
[0}
o
o |
N
o
T T y y T
0 10 20 30 40

Releases

Figure 8: Survival curves for the three different toggle types,
showing the percentage of toggles surviving 1, 2, etc. releases
of Google Chrome.

been removed, while 44 (17%) still lingered in the source
code as technical debt. Interestingly, 2 of the 11 toggles
marked as “Removed” were not actually removed yet.

Since, in theory, release toggles should be removed after
the feature has been stabilized, their lingering existence is
worrisome technical debt. Based on our findings and our
discussions with Google Chrome developers, a weakness of
release toggles is that it is hard to convince a developer to
go back and remove them. There is a lack of tool support for
identifying all if-conditions involving a toggle, removing these
conditions, integrating the feature code permanently into the
surrounding code and ensuring that the (now permanent)
feature is still working correctly. On top of the unrewarding
nature of the task and lack of tool support, features often
take a few releases before they are considered stable and
the developer who wrote the toggle code in the meantime
typically has moved on to newer features.

shows the survival curves for the toggles of the
three types identified in 73% of the development
toggles and 77% of the long-term business toggles survive
at least 10 releases, while for release toggles this is 53%.
The curves show that release toggles disappear faster from
the code base than the other two kinds of toggles (which
intuitively makes sense), however the gap between release
toggles and the other toggles is only about 4 releases.

Development toggles roughly have the same trend as long-
term toggles until 12 releases, after which they are more
aggressively removed. Given their long survival, develop-
ment and long-term toggles explicitly become a part of the
permanent source code (without removing their if-conditions),
and hence need to be maintained when the regular code is.
Hence, an important part of feature toggles is not being used
for not-yet-permanent features, but rather for other reasons.

There are three types of toggles: development, long-term
business, and release toggles. Although release toggles
are shorter lived than the other types of toggles, 53%
still exist after 10 releases indicating that many linger
as technical debt.

6. PRACTITIONERS’ PERSPECTIVES ON
FEATURE TOGGLES

Since toggles originated from industry, there has been little
scientific research on them. In this section, we conduct a
thematic analysis on 17 talks and blog posts from well-know
practitioners. In each reference, we also include the job title
of each practitioner to give a sense of his or her expertise [1}
3,110, {11} |13} |19} |20 |21}, |23}, |24, |25} |26) 130, |31} |36} [37, |38]. We
contrast the themes to our quantitative case study results to
analytically generalize our findings and suggest future work.
Each section heading represents a theme that emerged.

Reconciling Rapid Release and Longterm Fea-
ture Development

The companies that we examined release very frequently. For
example, Flickr can release more than ten times a day |3,
Facebook releases its website exactly twice a day [36] and
Google releases a new major version of Chrome every 6
weeks [30]. To meet these deadlines, these companies limit the
scope of features and require teams to continuously integrate
their changes into the product’s master branch [27]. Small
bug fixes are easy to deal with in such a context, but features
that take months (and hence span multiple releases) clash
with a rapid release strategy. The traditional approach to
deal with such features is to have dedicated branches for long-
term features, enabling teams to work and experiment in
isolation. However, the final merge of the completed feature
branch into the master branch can take an unpredictable
amount of time, especially when branches have not been
synchronized with ongoing development. This merge pain
can lead to substantial delay and surprise bugs [29].

For example, Laforge [30], the release engineer who de-
signed the six week release cycle for Google Chrome, ex-
plains how before the introduction of feature toggles, release
branches would be blocked until features were finished. In
the meantime, development would build up on trunk, lead-
ing to the merging of approximately 500 patches during the
release process. Merging such a large number of patches into
the release branch in a short time frame introduces instabil-
ity, causing release deadlines to be missed and developers
spending 1 to 3 months stabilizing features for a release
(i.e., ironing out show-stopper bugs) instead of focusing on
regression bugs.

Therefore, many major companies doing rapid releases
prefer to work from a single master branch (trunk) in their
version control system and use feature toggles instead of fea-
ture branches to isolate feature development (e.g., Google [26]
and Facebook [36]). This allows teams to continuously, piece-
wise integrate their ongoing work on a long-term feature into
trunk, but hidden behind a feature toggle, which reduces the
total merge effort and makes merging more predictable. Tog-
gles also allow the continuous integration infrastructure [17]
to either test the current implementation of a feature or
ignore it, respectively by enabling or disabling the feature’s
toggle. Once the long-term feature is stable enough, its tog-
gle will be enabled by default. Eventually, when the feature
has been shown to work well in the field, the toggle can be
removed from the code altogether.

Developers at Lyris state that “[toggles] make large fea-
tures tractable in a continuous build environment” |19], while
Harmes, a Flickr developer, declares: “Feature flags and flip-
pers [toggles| mean we don’t have to do merges, and that

all code (no matter how far it is from being released) is
integrated as soon as it is committed” [25]. This allows web
applications like Flickr to deliver new features to users more
than ten times per day just by enabling the features’ corre-
sponding toggle. In the case of Chrome, feature toggles have
reduced the time to stabilize new patches to 11 days [35] (for
a 6-week release cycle). This reduction allows release engi-
neers to focus on “stability, security and critical regressions”
instead of writing patches for unstable new features [30]. In
our quantitative study, we indeed saw evidence that toggles
remain in the system for a long period of time, with 72%
surviving at least 5 releases.

Flexible Feature Roll-out

The easy-to-disable mentality behind feature toggles affords
developers, release engineers, and operation managers enor-
mous flexibility. In particular, feature toggles provide the
flexibility to gradually roll out features and do user “experi-
ments” (A/B testing) on new features. For example, “Every
day, we [Facebook]| run hundreds of tests on Facebook, most
of which are rolled out to a random sample of people to test
their impact” [11]. If a new feature does not work well, it is
toggled off. Otherwise, the feature is rolled out to a larger
user base (see below). The ability to flexibly enable and dis-
able feature sets to specific groups of users to determine their
effectiveness early on, reduces the investment in features that
are not profitable.

Furthermore, feature toggles also facilitate a gradual roll-
out (so-called “canary deployment”) where an increasing
percentage of end users see a new feature, e.g., 10%, 20% up
to 100% [4]. If unexpected issues arise as the system scales
from hundreds to millions of users (something that cannot
be simulated in-house before deployment), servers can be
toggled back to the previous version of the system without
requiring a new image to be loaded on (virtual) machines [19|.
This flexibility is especially important when a company has
updated thousands of servers and cannot afford the downtime
of loading a new image onto each machine.

Since Chrome is a desktop application, its feature roll-out
is more gradual. Features that are ready for release are
enabled on the alpha and beta channels and are gradually
exposed to a larger population. As we saw in our quantitative
results, only 3% of toggle events occur after a feature has
made it to release stabilization, indicating that most new
features are quite stable and few need to be toggled out.

Enabling Fast Context Switches

Kerzazi et al. [29] found that a large percentage of broken
builds, i.e., code bases that do not compile or pass tests after
merging a branch, are due to developers checking in their
changes into the wrong branch. For example, if a developer
working on a given feature in a dedicated branch gets a
request to fix an urgent bug, she needs to switch to another
branch, fix the bug and test it, then switch back to the
original branch to continue feature development. Developers
often mistake the branch they are in, leading to commits to
the wrong branch.

Ho, a developer at Google [26], explains how feature toggles
allow developers to prioritize the features and bug fixes they
want to work on. If a higher priority bug fix comes up, one can
just disable the toggle of the feature one is currently working
on, enable the toggle of the feature to fix, then start fixing the
bug. Returning back to the original feature is equally easy,

without the need to switch branches and potentially lose
uncommitted changes. According to Ho, toggling requires
less effort than switching branches, hence it reduces the
potential of unwanted check-ins and accompanying broken
builds. Rally Software’s Scott [38] goes as far as stating
“Context switching is a much bigger productivity killer than
a single line of added conditional complexity [i.e. a toggle]
in a source file will ever be.”

From our quantitative Chrome results, we saw that over
97% of toggle changes occur during development. This fast
context switching by changing a toggle value clearly allows
developers to test and isolate work-in-progress and is an
important aspects of toggles for Chrome developers.

Features are Designed to be Toggleable

Feature toggles require a shift in development mentality, as
they require all features to be easy to revert (disable). For
example, the on-call developers at Facebook responsible for
monitoring how new features behave in production (DevOps)
need to be able to disable malfunctioning features within
seconds to avoid affecting millions of users [36].

Developing new features behind a feature toggle requires
discipline and additional effort during feature design and
development [30]. Features must be isolated from each other
to avoid toggle dependencies. Done incorrectly, a feature’s
implementation could cross-cut a large number of compo-
nents, all of which would be scattered with feature toggles.
Sowa notes that developers should not “go into your existing
class and sprinkle code [toggles| everywhere” [19]. For this
reason, adding toggles to features that already exist in the
system is difficult and not recommended by practitioners.

However, the investment in making features independent
and toggleable has the positive side-effect of making the
system more decoupled from other features [19]. This side
effect is comparable to the side effect of writing unit tests —
unit tests force the system to be written in a modular man-
ner because each unit must be tested independently. This
investment remains after the feature toggles have been phys-
ically removed from the system and leads to lower coupling,
which should improve long-term maintenance and testing of
a system.

Toggle Debt

In a blog post entitled “Feature Toggles are one of the worst
kinds of Technical Debt”, Bird describes some of the major
pitfalls associated with feature toggles [10]. The core problem
that he points out is that permanent code is intertwined with
unreleased, potentially failing code.

Dead code: The most commonly cited disadvantage of
toggles is that they can be left behind in the code base
instead of being removed once a feature is stable |10} [19]. In
some cases, temporary release toggles can even be turned
into permanent business toggles, for example to limit access
to a feature to certain groups of users. In general, a feature’s
toggle should be removed as soon as possible to reduce the
complexity of the code. According to Sowa, “We started
using feature toggles a lot and by the end of 2009 we ended
up with 80 active toggles in production. In 2010 we decided
to clean up the toggles that are no longer in use because
80 toggles were too much and making the process complex.”
After the clean up, 48 toggles were left [19]. Since Chrome
has over 1000 toggles in use, it is clear that the number of
toggles a project is comfortable with varies dramatically.

A second case of dead code related to toggles is when a
feature that should be removed is left in the code as is, with
its toggle disabled. Having new, old, and preliminary code
live in the same release is a risky proposition. Bird gives an
example of such a failure, when the Knight Capital Group
(which produces software for trading companies) accidentally
reused an old feature toggle and “when the flag [toggle] was
turned on, old code and new code started to run on different
computers at the same time doing completely different things
with wildly inconsistent and, ultimately business-ending re-
sults. By the time that the team figured out what was going
wrong, the company had lost millions of dollars” [10].

In the Knight example, tests had not been properly con-
ducted to ensure consistency and compatibility. In con-
trast, when Netflix migrated from SimpleDB to a Cassandra
database, they first built a consistency checking infrastruc-
ture to have the new code running in the background with the
old code. Once “there were minimal data mismatch (<0.01%)
found [...], we flipped a flag [toggle] to make Cassandra as
the source of truth” [32].

Preliminary code: Although it is possible to have low
quality code checked in behind feature toggles, the practition-
ers we studied ensured that release toggles that demarcate
work-in-progress are of the same quality as any other code
checked into trunk, such as bug fixes |19} |30]. For example,
on Google Chrome, code that is behind a feature toggle goes
through the same testing and review process as any other
change made to trunk. That said, whereas branches enable
experimentation with temporarily broken code, feature tog-
gles are less forgiving, since code guarded by a toggle at least
needs to be compilable.

Combinatorial Feature Testing

Testing is a critical aspect of continuous integration, with
large companies like Google and Facebook running a massive
test suite on every change made to trunk [36]. As feature
toggles allow flexible roll-out of features (see above), any
combination of features could become the next release. Hence,
in theory every change to trunk should be tested across
all possible combinations of enabled feature toggles. This
of course introduces an explosion of tests to run, leading
practitioners to voice the question “how do we test all possible
combinations of features?”

Fowler’s advice is to only test the combinations that one
realistically is going to use in production [21]. Typically, a
product’s roadmap is able to select a likely subset of features,
of which a handful could still be left out when not ready. For
example, the Google Chrome project enables all experimental
features on the development trunk to test each change, i.e.,
only one configuration of feature toggles is being tested
at this stage. Then, before the stabilization stage begins,
experimental features are disabled and further tests are run
on the set of features that are likely to be released. As soon
as a scheduled feature is cancelled for the upcoming release,
the tests are reconfigured to disable that feature’s toggles.

The flexibility afforded by toggles benefits testing. Flexi-
bility during feature roll-out implies that it is easier to spread
testing across different groups of users. For example, during
beta testing some users could test one combination of fea-
tures, while others are testing another combination. This in
turn represents another way to deal with the combinatorial
nature of testing with feature toggles. Our results on Chrome
also showed that toggles can in fact support testing activities,

with 33% of toggles being used for testing and debugging
purposes.

7. THREATS TO VALIDITY

There are a number of specific threats to validity for our
study. By focusing on one exploratory case study, our quan-
titative results suffer from a threat to external validity. As
a result, we triangulated and extended our findings beyond
Chrome by performing a thematic analysis on talks and blogs
by experienced practitioners. Future work is necessary to
measure how different organizations, with different kinds of
software systems (web or mobile apps) use feature toggles.

For our qualitative findings, we used a simple thematic
analysis technique [22]. However, any such study has inher-
ent investigator bias. To reduce this bias, we had multiple
authors code the blogs and videos as well as review the fi-
nal grouping of codes. In the event of disagreement and
misunderstandings, we consulted the data or asked Chrome
and other developers to reach a consensus for a contentious
theme.

There are few threats to construct validity as our metrics
are simple quantifications of the time of commits and of
changes to toggles made in commits.

Since the Chrome spreadsheet maintenance campaign 28|
was a manual effort, its data is not complete and covered
a short time frame of Chrome’s development. For example,
while the spreadsheet was created around release 34, the
number of toggles in adds up to 724, which would
correspond to the time frame around release 20 in
We suspect that while the spreadsheet was initially complete,
it has not been fully kept up-to-date, likely because of the
effort involved. Despite these problems, the dataset is inter-
esting as it is a large sample of toggles that are manually
annotated by developers with the rationale for each toggle.

8. CONCLUSIONS AND FUTURE WORK

Feature toggles allow large companies, including Google,
Flickr and Facebook, to easily enable or disable new features
that are works-in-progress, in order to simplify their merging
into the version control system. Although feature toggles
are extensively used in industry, as far as we know this is
the first in-depth empirical study of toggles. We make three
major contributions. First, using Chrome as a case study,
we quantify the prevalence and lifecycle of toggles. Second,
we categorize the types of toggles and measure the degree
of technical debt based on a Chrome toggle maintenance
campaign. Third, we describe how practitioners from a
variety of large successful companies use toggles. In this
section, we integrate our findings and discuss future work.

Reconciling Rapid Release and Long-term Feature
Development.

“[toggles] make large features tractable in a continuous
build environment” [19]. The companies we studied often
release multiple times per day, which clashes with the unpre-
dictable amount of time necessary to merge feature branches
as well as the difficulty of reverting such merges afterwards.
Instead, feature toggles provide more flexibility. For example,
if during the release process a feature is not ready and is
blocking a release, a toggle can disable it, unblocking the
release. Our quantitative evidence supports the practition-
ers’ views of using toggles for long-term development, as we
found that half the Chrome toggles are still in the system

after 12 releases (1.5 years). However, future work is needed
to compare the total effort involved in integrating feature
branches versus using feature toggling.

Flexible Feature Roll-out.

Feature toggles can change the functionality of the system
without recompiling the code. Large web companies use
this benefit to gradually roll-out and test the effectiveness
of new features, for example using A/B testing to assess
the value of features in a live environment. Furthermore,
major bugs in new features can be quickly reverted on a
web server without the need to revert, recompile, and deploy
a new binary. Quantitatively, we found a linearly growing
set of feature toggles, except for a period of active toggle
maintenance. These sets of toggles allow both developers and
end-users to change the features that are being executed (as
exemplified by our findings for toggle value changes). Since
we studied a desktop application, future empirical studies
are necessary to understand how this process works for web
apps.

Enabling Fast Context Switches.

Toggles allow developers to toggle off a feature they are
working on and switch to a more pressing bug fix, without
the overhead of having to switch branches. We found initial
evidence of this in the massive number of toggling events
that occurred in version control commits, i.e., a developer
temporarily committed her work-in-progress, disabled by a
toggle. Future user studies are necessary to compare toggle-
based context switches to branch-based switches.

Designing Features to be Toggleable.

Designing a new feature such that it can be toggled back
to the old feature behaviour requires additional development
effort. Features must be as decoupled from each other as
possible to reduce the number of toggle dependencies. Done
correctly, practitioners state that this effort results in a more
decoupled system. Our quantitative findings support this
cost, as developers made over 5,044 commits that introduced
or re-factored toggles, covering a relatively large number of
files and lines. Interesting future work involves studying how
toggling affects the architecture of a system.

Toggle Debt.

Old feature code that is disabled through toggles represents
“one of the worst kinds of technical debt” [10]. We quantify
the maintenance burden of feature toggles by measuring how
developers reduce the number of toggles, re-factor feature
sets to better organize toggles, maintain naming conventions,
change the values of toggles to reflect the state of the system,
and document and keep track of existing toggles in a team
spreadsheet. Understanding the areas covered by toggles
using advanced dynamic analysis techniques is an interesting
area of future work.

Combinatorial Feature Testing. The larger the num-
ber of feature toggles, the more possible combinations of
features must be tested. Fowler’s advice is to only test the
combinations that one realistically is going to use in produc-
tion [21]. One third of toggles on Chrome relate to testing
and development.

To conclude, feature toggles are a widespread industrial
practice and we hope that our empirical investigation will
spark interest and future work into the costs and benefits of
this important software engineering practice.

9. REFERENCES
[1] B. Adams, C. Bird, S. Bellomo, F. Khomh, and

2]

3]

[4]

[5]

(6]

7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]
(16]

(17]

K. Moir. International workshop on release engineering
(releng). |http://releng.polymtl.ca.

B. Adams and S. McIntosh. Modern release engineering
in a nutshell — why researchers should care. In Leaders
of Tomorrow: Future of Software Engineering,
Proceedings of the 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), Osaka, Japan, March 2016.

O. M. Allspaw and P. Hammond. 10+ Deploys Per
Day: Dev and Ops Cooperation at Flickr. In Velocity:
Web Performance and Operations Conference, June
2009. Job title: Operations Manager & Engineering
Manager at Flickr.

L. Bass, I. Weber, and L. Zhu. DevOps: A Software
Architect’s Perspective. SEI Series in Software
Engineering. Addison-Wesley Professional, May 2015.
J. Bauman. Issue 10875074: Ensure we don’t use
swiftshader to present flash fullscreen - code review.
https://chromiumcodereview.appspot.com/10875074/.
S. P. Berczuk and B. Appleton. Software Configuration
Management Patterns: Effective Teamwork, Practical
Integration. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst,

K. Czarnecki, A. Wasowski, and S. She. Variability
mechanisms in software ecosystems. Information and
Software Technology, 56(11):1520 — 1535, 2014. Special
issue on Software Ecosystems.

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu. The promises and perils of
mining git. In Proc. of the 2009 6th IEEE Intl.
Working Conf. on Mining Software Repositories (MSR),
pages 1-10, 2009.

C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE "12, pages
45:1-45:11, New York, NY, USA, 2012. ACM.

J. Bird. Feature toggles are one of the worst kinds of
technical debt. http://bit.ly/IPP9tGF. Job title: CTO
at BIDS Trading Technologies.

A. Bosworth. Building and testing at facebook.
http://on.fb.me/1cY6kla, August 2012. Job title: VP
Engineering at Facebook.

Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Early
detection of collaboration conflicts and risks. IEEE
Trans. Softw. Eng., 39(10):1358-1375, Oct. 2013.

C. Cantrell. All about chrome flags.

http://adobe.ly /1AqedIS. Job title: Senior Experience
Development Manager at Adobe.

M. Cataldo and J. D. Herbsleb. Factors leading to
integration failures in global feature-oriented
development: An empirical analysis. In Proceedings of
the 33rd International Conference on Software
Engineering, ICSE 11, pages 161-170, New York, NY,
USA, 2011. ACM.

M. Documentation. Conditional compilation in visual
basic. http://bit.ly /1C5LYz9.

O. Documentation. Writing device drivers.
http://bit.ly /1LWsLWa.

P. Duvall, S. M. Matyas, and A. Glover. Continuous
Integration: Improving Software Quality and Reducing

http://releng.polymtl.ca
https://chromiumcodereview.appspot.com/10875074/
http://bit.ly/1PP9tGF
http://on.fb.me/1cY6k1a
http://adobe.ly/1Aqe4IS
http://bit.ly/1C5LYz9
http://bit.ly/1LWsLWa

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Risk (The Addison-Wesley Signature Series).
Addison-Wesley Professional, 2007.

E. Elliott. Programming JavaScript Applications.
O’Reilly Media, June 2014.

R. L. Erik Sowa. Feature bits: Enabling flow within
and across teams. In Lean Software and Systems
Conference, April 2010. Job title: Director Engineering
& Front End Architect at Lyris.

T. Fitz. Continuous deployment at IMVU: Doing the
impossible fifty times a day.
http://timothyfitz.com/2009/02/10/continuous-
deployment-at-imvu-doing-the-impossible-fifty-times-a-
day/, February 2009. Job title: Technical Lead at
IMVU.

M. Fowler. Featuretoggle.
http://martinfowler.com/bliki/FeatureToggle.html,
October 2010.

B. G. Glaser and A. L. Strauss. The discovery of
grounded theory: Strategies for qualitative research.
Transaction Publishers, 2009.

P. Hammant. Introducing branch by abstraction.
http://paulhammant.com/blog/branch_by_abstraction.
html, April 2007. Job title: Consultant at
ThoughtWorks.

E. Harel. Feature flags made easy. http://techblog.
outbrain.com/2011/07 /feature-flags-made-easy, July
2011. Job title: Managing Director at Harel-Hertz
Investment House Ltd.

R. Harmes. Flipping out.

http://code.flickr.net /2009/12/02/flipping-out/,
December 2009. Job title: Senior Frontend Engineer at
Flickr.

I. Ho and L. Pasricha. Nyc tech talk series: Testing
engineering @ google & the release process for google’s
chrome for ios.
https://www.youtube.com/watch?v=p9bEc60C6vw.
Job title: Tech Lead / Manager & Software Test
Engineer at Google.

J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley Professional,
1st edition, 2010.

P. Kasting. Command-line flag removal status, and how
you can help.
https://groups.google.com/a/chromium.org/d/msg/
chromium-dev/8EjjXUoFqMI/dFqO_M4Yb2gJ.

N. Kerzazi, F. Khomh, and B. Adams. Why do
automated builds break? an empirical study. In Proc.
of the 30th IEEE Intl. Conf. on Software Maintenance
and Evolution (ICSME), pages 41-50, 2014.

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

(42]

(43]

A. Laforge. Chrome release cycle. http:

/ /www.slideshare.net /Jolicloud /chrome-release-cycle,
January 2011. Job title: Technical Program Manager
(Chrome) at Google.

A. Mordo. Continuous delivery - part 3 - feature
toggles. http://bit.ly/lerlgrzl Job title: Search Engine
Expert at Indeed.com.

P. Padmanabhan and S. Madappa. Netflix queue: Data
migration for a high volume web application.
http://nflx.it/1Fk493Z. Job title: Architect &
Architect at Netflix.

A. Rahman, E. Helms, L. Williams, and C. Parnin.
Synthesizing continuous deployment practices used in
software development. In Agile Conference (AGILE),
2015, pages 1-10, 2015.

M. T. Rahman and P. C. Rigby. Contrasting
Development and Release Stabilization Work on the
Linux Kernel. In International Workshop on Release
Engineering 2014, 2014.

M. T. Rahman and P. C. Rigby. Release stabilization
on linux and chrome. In IEEE Software 2015. IEEE,
2015.

C. Rossi. Moving to mobile: The challenges of moving
from web to mobile releases. Keynote at RELENG 2014
https://www.youtube.com/watch?v=Nffzkkdq7GM,
April 2014. Job title: Engineering Director-Release
Engineering at Facebook.

B. Schmaus. Deploying the netflix api. http://techblog
netflix.com/2013/08/deploying-netflix-api.html, August
2013. Job title: Engineering Director at Netflix.

R. Scott. Feature toggles - branching in code.
https://www.rallydev.com/blog/engineering/
feature-toggles-branching-code. Job title: Development
Manager at Rally Software.

S. Shankland. Google ethos speeds up chrome release
cycle. http://cnet.co/wlS24U, July 2010.

S. Shankland. Rapid-release firefox meets corporate
backlash. |http://cnet.co/ktBsUU, June 2011.

E. Shihab, C. Bird, and T. Zimmermann. The effect of
branching strategies on software quality. In Proceedings
of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
ESEM ’12, pages 301-310, New York, NY, USA, 2012.
ACM.

J. w Creswell. Research design: Qualitative,
quantitative, and mized methods approaches. SAGE
Publications, Incorporated, 2009.

R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series.
Sage Publications Inc., 3 edition, 2003.

http://martinfowler.com/bliki/FeatureToggle.html
http://paulhammant.com/blog/branch_by_abstraction.html
http://paulhammant.com/blog/branch_by_abstraction.html
http://techblog.outbrain.com/2011/07/feature-flags-made-easy
http://techblog.outbrain.com/2011/07/feature-flags-made-easy
http://code.flickr.net/2009/12/02/flipping-out/
https://www.youtube.com/watch?v=p9bEc6oC6vw
https://groups.google.com/a/chromium.org/d/msg/chromium-dev/8EjjXUoFqMI/dFqO_M4Yb2gJ
https://groups.google.com/a/chromium.org/d/msg/chromium-dev/8EjjXUoFqMI/dFqO_M4Yb2gJ
http://www.slideshare.net/Jolicloud/chrome-release-cycle
http://www.slideshare.net/Jolicloud/chrome-release-cycle
http://bit.ly/1er1grz
http://nflx.it/1Fk493Z
https://www.youtube.com/watch?v=Nffzkkdq7GM
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
https://www.rallydev.com/blog/engineering/feature-toggles-branching-code
https://www.rallydev.com/blog/engineering/feature-toggles-branching-code
http://cnet.co/wlS24U
http://cnet.co/ktBsUU

