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Montréal, Canada

peter.rigby@concordia.ca
Accepted to ICSE’19. Camera-ready version will be available in February.

Abstract—Recent works have concluded that software is more
repetitive and predictable, i.e. more natural, than English texts.
These works included “simple/artificial” syntax rules in their
language models. When we remove SyntaxTokens we find that
code is still repetitive and predictable but only at levels slightly
above English.

Furthermore, previous works have compared individual Java
programs to general English corpora, such as Gutenberg, which
contains a historically large range of styles and subjects (e.g. Saint
Augustine to Oscar Wilde). We perform an additional comparison
of technical StackOverflow English discussions with source code
and find that this restricted English is similarly repetitive to code.

Although we find that code is less repetitive than previously
thought, we suspect that API code element usage will be repetitive
across software projects. For example a file is opened and closed
in the same manner irrespective of domain. When we restrict
our n-grams to those contained in the Java API we find that the
entropy is significantly lower than the English corpora.

Previous works have focused on sequential sequences of tokens.
When we extract program graphs of size 2, 3, and 4 nodes we
see that the abstract graph representation is much more concise
and repetitive than the sequential representations of the same
code. This suggests that future work should focus on statistical
graph models that go beyond linear sequences of tokens.

Our anonymous replication package makes our scripts and
data available to future researchers and reviewers [1].

Index Terms—Basic Science; Entropy; Language Models; Sta-
tistical Code Graphs; StackOverflow

I. INTRODUCTION

Language modelling is a popular approach in the field
of Statistical Machine Translation (SMT) [24] and Natural
Language Processing (NLP) [22]. The growing popularity
of this approach has resulted in the application of language
modelling techniques in diverse fields. In the field of Software
Engineering, language modelling has revealed power-law distri-
butions and an apparent ‘naturalness’ of software source code
[5, 9, 11, 20, 28, 36, 40, 51]. Although the term naturalness
is vague, it has been expressed mathematically with statistical
language models [20]. In essence, language models trained on a
large corpus, assign higher naturalness to previously seen code,
while assigning lower naturalness to unseen or rarely seen
code. For example, Campbell et al. [9] showed that language
models mark code which is syntactically faulty as unlikely
or less likely than code without syntax errors. The goal of
this paper is to revisit the “natural” code hypothesis in new
contexts. As in NLP, different programming tasks will require
different tuning and cleaning of a corpus. For example, if the

goal is to create an English grammar correction tool, then
stopwords such as ‘the’ are necessary. In contrast, if the goal is
to extract news topics then stopwords must be removed as these
dominant tokens will introduce noise and reduce the quality of
predictions. Analogously, if the goal is to find syntax errors then
the corpus must include SyntaxTokens. In contrast, if the goal is
to recommend multi-element API usages, then SyntaxTokens
will dilute predictions. For example, Hindle et al. [20] did
not remove SyntaxTokens and in their autocompletion model
they suggest a SyntaxToken approximately 50% of the time.
As a result, a recommender tool would suggest an obvious
separator before a useful token such as an API call. In this
work, we examine the repetitive behaviour of source code for
multiple programming languages, we determine the impact of
SyntaxTokens on repetition, we quantify how repetitive API
usages are, and we compare the repetitiveness of n-grams vs
graph representations of code. We examine each topic in the
following four research questions.

RQ1, Replication: how repetitive and predictable is
source code?

We replicate the work of Hindle et al. [20]. We also examine
6 additional programming languages: C#, C, JavaScript, Python,
Ruby, and Scala. Our replication gives us confidence that our
dataset is large and diverse enough to test the “naturalness”
hypothesis in new contexts.

RQ2, Repetitive Syntax: how repetitive and predictable
is code once we remove SyntaxTokens?

In NLP, it is standard practice to remove punctuation and
stopwords [31, 46]. We examine the contribution of three types
of SyntaxTokens to the language distribution: separators such
as bracket and semi-colon; keywords, such as if and else;
and operators, such as plus and minus signs.

RQ3, API Usages: how repetitive and predictable are
Java API usages?

Frameworks and APIs provide reusable functionality to
developers. Unlike the code written for a particular project, API
code is similar across projects. For example, a file is opened
and closed in the same manner whether it is used in banking or
healthcare. We examine only Java API tokens and determine
how repetitive and predictable their usage is. Given the large
and successful literature on API usage recommendations and
autocompletions, we suspect that API elements may be more
repetitive and predictable than general program code.
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TABLE I: Corpus size in tokens. The total of tokens must be
constant across languages.

Language Files Total Tokens Unique Tokens

Java 26,938 24,091,076 388,399 (1.61%)
C# 23,186 24,217,086 389,800 (1.61%)
C 10,932 25,255,417 938,434 (3.72%)

JavaScript 10,544 25,157,297 257,606 (1.02%)
Python 15,454 23,198,691 513,728 (2.21%)
Ruby 60,371 25,896,601 715,157 (2.76%)
Scala 34,242 23,634,250 333,794 (1.41%)

RQ4, Statistical Code Graphs: how repetitive and pre-
dictable are graph representations of Java code?

An n-gram language model assumes that the current token
can be predicted by the sequence of n − 1 previous tokens.
However, compilers and humans do not process programs
sequentially. In the case of compilers, parse trees or syntax
trees are generated to provide abstract representations of
code. Eyetracking studies of developers reading code show a
nonlinear movement along the control and data flow of the
program [8]. We extract the Graph-based Object Usage Model
(Groum)[37] from Java programs and compare how repetitive
graphs of nodes sizes 2, 3, and 4 are with equivalent sized
n-grams from the same Java programs.

The remainder of this paper is structured as follows. In
Section II, we describe our data. In Sections III, IV, V, and VI,
we report the results of our experiments for each of the research
questions. Since we extract different tokens and graphs, we
describe the extraction methodology in section in which it is
used. In Section VII, we discuss limitations of our work and
threats to validity. In Section VIII, we position our work in
the context of the literature. In Section IX, we summarize our
contribution and conclude the paper. We also publicly release
a replication package [1] which includes all processed n-gram
and graph data as well as the scripts used in our processing
pipeline.

II. DATA SOURCES

Project Source Code: We create our source code corpus
from 134 open source projects on GitHub. As a starting point,
we select the Java and Python project used in a prior study [49].
To ensure that we processed a consistent number of tokens
for each language, between 20M and 25M tokens, we added
Java and Python projects as well as projects from 5 additional
programming languages. These projects were selected from the
most popular projects on GitHub for each language.1 For all
the projects, we examine only the master branch. Since each
research question requires the source code to be processed
differently, e.g., n-grams vs graphs, we describe the extraction
methodology when we answer each question. The list of
projects, scripts, and the processed n-grams and graphs can
be found in our replication package [1]. A summary for each
programming language is shown in Table I.

1Top GitHub projects per language: https://github.com/trending/

English and StackOverflow text: Following Hindle
et al. [20] we process the Gutenberg corpus. We use a subset
of the Gutenberg corpus which includes over 3.4k English
works [26]. The corpus represents a range of styles, topics,
and time periods making Gutenberg a diverse corpus. To
make a comparable, technical English corpus, we process
StackOverflow posts that discuss programming tasks in English
for each programming language.

We extract 200, 000 posts from StackOverflow by removing
code and keeping only the English text. Furthermore, we use
the following constraints to reduce noise and poorly constructed
English when selecting posts:

1) We only use posts which are the accepted answer.
2) Each post has at least 10 positive votes. The correspond-

ing question post has at least 1 positive vote.
3) We take posts which have at least 300 characters of

English text and exclude the code snippet and any code
words in the text. This ensures that our corpus has
sufficient English tokens. Although we exclude code
words, we take only posts that contain a code snippet
to ensure that the discussion is about code and not, for
example, about the configuration of an IDE.

To extract the English tokens in StackOverflow posts we
extract the necessary data (body without code) with a Python
HTML library. We merge the posts into a single file and perform
the NLP process steps of stemming, lematization, lexicalization
and stopword removal.

III. REPLICATION

RQ1: How repetitive and predictable is source code?
We replicate the work of Hindle et al. [20] to ensure that the

data we sample produces similar results. We also examine C#,
C, JavaScript, Python, Ruby, and Scala. We want to understand
if the language and programming paradigm influence the
repetitive nature of programming.

A. Theoretical background and methodology

We give the definitions of n-gram language models, cross
entropy, and SelfCrossEntropy and describe how we extract
n-grams.

1) n-gram Language Model: We use the term language
model (LM) to mean the probability distributions over a
sequence of n tokens P(k1, k2,..., kn). A LM is trained on
a corpus containing sequences of tokens from the language.
Using this LM our goal is to assign high probability to tokens
with maximum likelihood, and low probability to n-grams
with lower likelihood. The primary purpose of modelling a
language statistically using LMs is to model the uncertainty
of the language by determining the most probable sequence of
tokens for a given input.

Consider a sequence of tokens k1, k2, k3, ... kn−1, kn
in a document, D. n-gram models statistically calculate
the likelihood of the nth token given the previous n-1
tokens. We can estimate the probability of a document based

https://github.com/trending/
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on the product of a series of conditional probabilities [23, Ch 4]:

P (D) = P (k1)P (k2|k1)P (k3|k1, k2)...P (kn|k1, k2, ..., kn−1)

Here, P(D) is the probability of the document and P(ki)
is the conditional probability of tokens. We can transform
the above equation to a more general form which is given below.

P (k1, k2, k3, ..., kn−1, kn) =

n∑
i=1

P (ki|k1, ..., kn−1)

This transformation uses the Markov Property which
assumes that token occurrences are influenced only by limited
prefix of length n [52]. Furthermore, we can consider this as
a Markov Chain which assumes that the outcome of the next
token depends only on the previous n− 1 tokens [38]. Thus
we can write:

P (ki|ki−(n−1), ..., ki−1) = P (ki|ki−(n−1))

This equation requires the prior knowledge of the conditional
probabilities for each possible n-gram. These conditional
probabilities are calculated from the n-gram frequencies. We
use these n-grams to determine the entropy of a language
corpus including source code.

2) SelfCrossEntropy: Hindle et al.’s [20] calculate the
average number of bits (entropy), required to predict the nth
token of the n-grams in a document. They use the standard
formula for cross-entropy, which is also the log-transformation
of perplexity. They define cross-entropy in the context of n-
grams. Given a language model M , the entropy of a document
D, with n tokens, is

H(D,M) = − 1

n

n∑
i=1

log2P (ki|k1...ki−1)

They use cross-entropy in a unique manner to define
SelfCrossEntropy. Instead of estimating the language model M
from another document or corpus, they divide a single corpus
into 10 folds. M is then calculated from 9 of the folds and
H(D,M) is calculated with D being the remaining fold. The
final SelfCrossEntropy is the average value across all folds.

3) Extracting n-grams: We replicate Hindle et al. [20] using
the same tools and methodology as shown in Figure 1. We
remove the source code comments. We lexicalize each source
file in the project using ANTLR2 to extract code tokens. Then
we merge all the lexicalized files to create a corpus. For
example, to get the SelfCrossEntropy of the Java language, we
process all .java files. Then we merge the processed files to
create our final corpus. To calculate the SelfCrossEntropy, a
single corpus is split into 10 folds. Ten-fold cross validation
is used with the probability estimated from 90% of the data
and validated on the remaining 10%. The results are averaged
over the 10 test folds. We use MIT Language Model (MITLM)

2ANTLR4 http://www.antlr.org/

toolkit3 to calculate the SelfCrossEntropy for each data set.
MITLM uses techniques for n-gram smoothing to deal with
unseen n-grams in the test fold (see Hindle et al. [20] for
further discussion). We calculate the SelfCrossEntropy for
token sequences, i.e. n-grams, from 1-grams to 10-grams for
each programming corpus, the Gutenberg corpus and English
text on StackOverflow corpus. The processing pipeline for the
experiments is shown in Figure 1.

B. Replication Result

How repetitive and predictable is software?
Figure 2a shows the replication of Hindle et al.’s [20] work,

including six additional programming languages and StackOver-
flow posts. All the programming languages under consideration
for this study show the same pattern of SelfCrossEntropy. The
highest SelfCrossEntropy is observed for unigram language
models. The value of SelfCrossEntropy declines significantly
for bigram and trigram models. From 3-grams to 10-grams the
SelfCrossEntropy remains nearly constant. Since we are able
to replicate Hindle et al.’s results, we are confident that our
dataset is large and diverse enough to test the “naturalness”
hypothesis in new contexts.

While the pattern is the same, the values of SelfCrossEntropy
are substantially different for each language. With Scala being
much less repetitive than C#. The difference among languages
leads us to conjecture that the syntax of the language artificially
reduces its SelfCrossEntropy.

The pattern of decreasing SelfCrossEntropy across n-
grams holds from Hindle et al.’s [20] work. However,
the value SelfCrossEntropy differs among languages.

IV. REPETITIVE SYNTAX

RQ2. how repetitive and predictable is code once we remove
SyntaxTokens?

Standard preprocessing steps in NLP involve the removal
of stopwords and punctuation [31, 46]. Stopwords, including
articles, e.g., “the”, and prepositions, e.g., “of”, are removed
in information retrieval tasks because they introduce noise in
the data set reducing the likelihood of retrieving interesting
information (unless one is creating a grammar checker). In our
work, we examine the impact of three types of SyntaxTokens:
separators such as brackets and semi-colons; keywords, such
as if and else; and operators, such as plus and minus signs.
Our replication package contains the full list of SyntaxTokens
for each language [1]. By including syntax in their analysis,
we suspect that Hindle et al. artificially inflate the naturalness
of source code. Without these syntax tokens we hypothesize
that raw source code will not be especially repetitive. In this
section, we examine the impact of each type of SyntaxToken
on the repetitiveness of code.

3MITLM https://github.com/mitlm/mitlm

http://www.antlr.org/
https://github.com/mitlm/mitlm
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Fig. 1: Pipeline for experiments performed in this study

(a) SelfCrossEntropy with SyntaxTokens. (b) SelfCrossEntropy without SyntaxTokens.

Fig. 2: The left figure is a direct replication of Hindle et al. [20]. The right figure does not include SyntaxTokens and the
number of bits required to encode the programming languages is reduced and the variation among them is substantially smaller.
Also the number of bits required to encode technical English on StackOverflow is similar to code.

A. Background and Methodology

For each programming language, we examined the language
specification to identify the keywords, separators, and operators.
We calculate the percentage of these SyntaxTokens in each
programming language. Then we remove SyntaxTokens from
the corpus and measure the entropy of n-grams without the
language specific tokens. We report the change in SelfCrossEn-
tropy of the n-grams after the removal of language specific
tokens and answer the following questions:

1) What percentage of total tokens are SyntaxTokens?
2) What is the change in SelfCrossEntropy after removing

SyntaxTokens?
3) How repetitive is code without SyntaxTokens compared

to general English and to technical English on Stack-
Overflow?4

4For the English corpora we removed the standard stopwords with the NLTK
toolkit.

B. Results and Discussion

What percentage of total tokens are SyntaxTokens? Stop-
words are removed during natural language information re-
trieval tasks because their high prevalence introduces noise
reducing the likelihood of retrieving highvalue information.
When applied to our programming corpora, in Table II, we
see that SyntaxTokens account for a high percentage of total
tokens. Across the programming languages, JavaScript has the
highest number of SyntaxTokens at 60% of total tokens, while
the smallest percentage is 41% for Ruby. Separators account
for the largest proportion of SyntaxTokens, between 23% and
47% of all tokens. The corresponding values for keywords
are 5% and 11%, and for operators, 6% and 15%. The main
conclusion is that SyntaxTokens dominate the tokens in
all programming languages and when included make code
look artificially repetitive. However, we are not suggesting
that researchers or developers remove all SyntaxTokens as there
may be cases where it is interesting to predict, for example,
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TABLE II: Percentage of language syntax token. SyntaxTokens
dominate the tokens in all programming languages and when
included make code look artificially repetitive.

Language Separators Keywords Operators Total

Java 44.00% 9.36% 5.85% 59.21%
C# 42.57% 10.96% 7.55% 61.08%
C 39.23% 5.50% 15.14% 59.87%
JavaScript 47.21% 6.87% 6.53% 60.61%
Python 41.98% 4.99% 6.42% 53.39%
Ruby 23.37% 8.37% 8.93% 40.67%
Scala 39.27% 7.40% 7.28% 53.95%

the control structure through the “if” keywords. We do feel, as
we discuss later, that statistical graph representations of code
that include control flow may be better abstract representations
than simply removing SyntaxTokens from a corpus.

What is the change in SelfCrossEntropy after removing
SyntaxTokens?

When we remove the SyntaxTokens and recalculate the
SelfCrossEntropy in Table III, we see a dramatic increase in
SelfCrossEntropy and a corresponding decrease in repetitive-
ness. For Java, we see that from 1-grams to 6-grams we need
a respective increase of 68%, 67%, 90%, 97%, 98% more bits.
After 6-grams we need a nearly constant 100% increase in
bits. Clearly more information is required to encode Java
programs without the artificially repetitive SyntaxTokens.

How repetitive is code without SyntaxTokens compared to
English?

We investigate the difference in SelfCrossEntropy between
programming languages and English by reporting the number of
additional bits necessary to encode English. Hindle et al. [20]
report a maximum average per-word entropy of approximately
8 bits for English and 2 bits for Java, which means that English
requires 4 times as many bits, while for 2-grams and 3-grams,
English requires 2 and 2.7 times as many bits. Similarly we
find that before removing SyntaxTokens, we need 1.7, 2.3,
2.7, 2.8, 2.9, more bits for 1-grams to 5-grams for Java. After
5-grams the increase is constant at 2.9 times.

However, without SyntaxTokens the number of additional
bits required is substantially less for Java: 1.0, 1.4, 1.4
additional bits for 1-gram to 3-grams and remains constant at
1.5 from 4-grams to 10-grams. This provides further evidence
that SyntaxTokens clearly account for a large proportion of the
repetitiveness in Java. With slight variation in the actual number,
this result generalizes to the other programming languages in
Figure 2b.

How repetitive is StackOverflow English?
As we discussed in the data section, the Gutenberg corpus
contains a wide range of English writing styles, topics, and
authors. In contrast, the programming corpora used in our work
and that of Hindle et al.’s are for single programming languages.
To provide a more comparable English corpora we processed
StackOverflow posts related to each programming language.
We find that SelfCrossEntropy of English on StackOverflow is
similar to that of code. For example, Java requires .9 times as
many bits as StackOverflow English to encode 1-grams. Clearly

the vocabulary on StackOverflow is very limited. For 2-grams,
1.1 times as many bits are required and this number remains
constant at 1.2 for 3-grams to 10-grams. After 2-grams we see
that sequences of token usages are larger in StackOverflow. This
is likely because classes and methods tend to be used together
in Java. However, compared to the originally reported 4 times
as many bits, or 300% more bits the removal of SyntaxTokens
shows a 1.1 to 1.2 times as many bits or 10 to 20% more
bits. This result is consistent across programming languages.
Technical discussion in English on StackOverflow have a
similar degree of repetition to code

C. Concluding discussion on SyntaxTokens

Hindle et al. were “worried” by the questions that we ask
in this section [20]. They asked “is the increased regularity
we are capturing in software merely a difference between the
English and Java languages themselves? Java is certainly a
much simpler language than English, with a far more structured
syntax.” To answer this question, they conducted an experiment
were they compared the SelfCrossEntropy of a single program
with the cross entropy of predicting the tokens in one Java
program with those in other Java programs. They conclude
that because the entropy for single programs is lower than the
entropy between programs that regularity of software is “not
an artifact of the programming language syntax.” However, in
both cases the programs were written in the same language,
Java, using the same syntax. Their experiment does not control
for simple syntactical regularities in the Java language. In
contrast, in our study we remove SyntaxTokens and find that
the regularity of programs drops dramatically. We conclude
that that the syntax of programming languages artificially
reduces the entropy of software. Our findings suggest that
software engineers should follow the NLP practice of removing
stopwords and punctuation, in this case SyntaxTokens, to
reduce the noise they introduce and to make higher value
recommendations.

SyntaxTokens make code look artificially repetitive
and when removed the SelfCrossEntropy drops and the
programming languages require a similar number of
bits to encode as technical English on StackOverflow.

V. API USAGES

RQ3. How repetitive and predictable are Java API usages?
API code is used across multiple projects in the same

manner regardless of the domain of the project. We extract
Java API tokens and determine how predictable their usage is.
For example reading from an input stream would have the
following Java API sequence:
FileInputStream.FileInputStream()
FileInputStream.read()
FileInputStream.close()
We conjecture that sequences of API elements, i.e. API
usages, should be more repetitive and predictable than general
program code.
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TABLE III: Percentage increase in SelfCrossEntropy after the removal of SyntaxTokens. For example, the SelfCrossEntropy for
Java doubles after 3-grams indicating a substantial drop in its repetitive nature.

Language 1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram 10-gram

Java 60.18 67.40 90.17 94.70 97.49 98.75 99.67 100.55 100.75 101.00
C# 56.73 48.26 77.66 84.34 87.52 89.42 90.04 90.65 90.94 91.16
C 46.75 64.50 81.33 84.95 87.85 90.30 91.80 92.26 92.66 92.85
JavaScript 42.48 35.72 34.61 31.47 32.58 33.03 33.43 33.60 33.66 33.69
Python 57.67 62.81 82.20 86.07 89.45 90.11 90.55 90.53 90.65 90.70
Scala 18.48 15.29 12.74 11.60 11.34 11.22 11.13 10.75 10.78 10.85
Ruby 31.18 36.82 42.91 44.65 45.55 45.87 45.99 46.02 46.05 46.07

Fig. 3: Comparing the Java API SelfCrossEntropy with raw
Java source code, Java source code without SyntaxTokens, and
English. The use of the Java API is highly repetitive.

A. Background and Methodology

We extract the Java API elements from the Java Platform
Library Standard Edition 7 Specification[17]. We remove all
tokens from the Java corpus which are not part of Java standard
libraries. The set of API elements includes package, class, field,
and method names (the full list and processed corpus can be
found in our replication package [1]). For the Java corpus, we
calculate the SelfCrossEntropy for the API usage of size 1 to
10-grams.

B. Results and Discussion for API Usages

Figure 3 compares the SelfCrossEntropy of n-gram API
usages in Java to raw Java, Java without SyntaxTokens,
StackOverflow English, and Gutenberg. We find that the
SelfCrossEntropy of the Java API is less repetitive and
predictable than the raw corpus which contains SyntaxTokens.
This result derives from the high proportion of SyntaxToken
tokens, i.e. 57% of tokens in Java are SyntaxTokens. Java that

excludes SyntaxTokens but includes internal code, requires
20% more bits for 1-grams and a consistent 30% more for 2 to
10-grams compared with the Java API. This is likely because
the domain specific tokens, for example, the “BankAccount”
class in a banking application, are used much less repetitively
than the API code, such as “String” or “InputStreamReader”
classes in standard Java 7 libraries.

The corresponding numbers for technical English on Stack-
Overflow, are 30% to 60% more bits. For Gutenberg, which
includes a diverse set of English texts, 50% to 90% more bits
are required. These differences are substantially lower than
Gutenberg and raw Java which requires between 70% and
190% more bits to encode the Gutenberg corpus.

We conclude that raw Java code that contains SyntaxTokens
is more repetitive than the Java API usages likely due to the
repetitive use of syntax rules. In contrast, we find that Java
API is more repetitive than general Java code that does not
contain SyntaxTokens.

We find that Java API usages are quite repetitive which
quantifies the truth underlying the large and successful
literature on sophisticated API recommendations (e.g.,
[4, 7, 30, 36, 44]).

VI. STATISTICAL CODE GRAPHS

RQ4: how repetitive and predictable are graph representa-
tions of Java code?

Most natural language models assume a sequential left-to-
right reading order. In contrast, compilers and humans do not
usually process programs sequentially. In the case of compilers,
parse trees or syntax trees are generated to provide abstract
representations. Eyetracking studies of developers reading code
show a nonlinear movement along the control and data flow of
the program [8] which differs from natural language reading
strategies [13]. For example, developers focus on method
signatures [45] and following beacons [12] in the code. In
this section, our goal is to measure how repetitive an abstract
graph representation of code is and to understand if it has
repetitions that cannot be identified with n-grams.

A. Background and Methodology

In order to determine how repetitive code graphs are, we
need a statistical graph extraction technique that is able to
satisfy the following requirements:
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1) Extract the code graphs from a large number of projects
that may not be able to be compiled due to, for example,
external dependencies.

2) Filter out granular information, such as variables and ex-
pressions, to include only control and data dependencies
among class objects and methods in the code graphs.

3) Identify isomorphic code graphs to determine the occur-
rence frequency of each graph to create statistical graph
models of code.

We evaluated the Eclipse AST parser, and found that it had
critical limitations:

1) The Java project dependencies must be present for each
project.

2) The AST includes lowlevel details, such as variable
names, which would artificially reduce graph frequencies.

3) Statistics on structurally similar ASTs is not built in. Tech-
niques [25][42][21] to identify structural similarities in
the code using ASTs are computationally expensive[33].

In summary, the Eclipse AST parser is designed for static
analysis, but is not appropriate for statistical based recommen-
dations.

In contrast, GROUMINER [32] was designed to extract
GRaph-based Object Usage Models (GROUMS) and to calculate
efficiently isometric graphs. Below we describe the steps
necessary to extract the frequency of Java code graphs:

1) Recoder is used to extract an AST without the need to
compile the program [29].

2) GROUMINER transforms the AST for each method
body into a GROUM. The nodes in a GROUM represent
constructors, method invocations, field accesses, and
branching points for control structures. The edges rep-
resent temporal data and control dependencies between
nodes.

3) Graph induction is used to generate subgraphs of the
GROUM for a specified size, in our case 2, 3, and 4-node
graphs.

4) GROUMINER computes the occurrence frequencies of
each GROUM [50].

B. Data

We use GROUMINER to capture the occurrence frequency of
each GROUM in the Java projects used in the previous sections.
In the previous section we found that API code tends to be
more repetitive and predictable across multiple projects. As a
result, we capture GROUMS containing API usages from the
Java Platform Standard Edition 7 Specification [17]. We include
GROUMS that contain at least one Java API node. We eliminate
GROUMS which contain only control flow structures or only
contain internal code. To perform a fair comparison with n-
grams, we use the same inclusion and exclusion criteria to filter
the n-grams tokens (see our replication package for the graphs
and n-grams [1]). Our goal is to study the inherent degree of
repetition for the two representations, graphs and n-grams. In
the previous sections, we calculated the SelfCrossEntropy by
predicting the nth token for n-grams in 10-fold cross validation.

TABLE IV: The cumulative proportion of n-node graphs and
n-grams from 0% to 100% in 10 point increments for all usages.
For example, the top 40% of the n-node graphs account for
over 89% of all usages. The table shows the left skew of the
distributions.

Cumulative
Percentage

2-node
graph

3-node
graph

4-node
graph 2-gram 3-gram 4-gram

0 0.00 0.00 0.00 0.00 0.00 0.00
10 71.46 62.18 61.50 66.22 47.34 38.72
20 80.58 72.90 72.06 75.55 58.06 50.97
30 85.82 79.21 78.38 80.95 65.96 57.13
40 89.14 84.11 83.53 85.58 70.82 63.26
50 92.21 87.75 87.14 87.98 75.69 69.38
60 93.76 90.20 89.71 90.38 80.55 75.50
70 95.32 92.65 92.28 92.79 85.41 81.63
80 96.88 95.10 94.86 95.19 90.27 87.75
90 98.44 97.55 97.43 97.60 95.14 93.88

100 100.00 100.00 100.00 100.00 100.00 100.00

Since graphs are not sequential, the most appropriate prediction
comparison is unclear. To avoid this problem, we examine the
underlying frequency distribution for each set of n-grams and
n-node graphs on the same set of Java projects. This strategy of
examining the distribution has been employed in many previous
works examining code structure [5, 11, 28, 51]. The more left
skewed the distribution the more repetitive and predictable the
representation.

C. Results and Discussion for Statistical Java Code Graphs

We collect GROUMS with 2, 3 and, 4 nodes and the
corresponding n-grams. We measure the occurrence frequencies
of each GROUM and n-gram across the Java projects. Since
graphs represent an abstraction of code, we conjecture, that
on the same code, GROUMS will have a stronger Pareto-type
distribution than n-grams, i.e. graphs will be more repetitive
and left skewed. In Figure 4 we plot the top 20% of the n-grams
and n-node GROUMS against the percentage of total n-grams
and n-node GROUMS, respectively. We see both n-grams and
n-node GROUMS are highly left skewed. For example, the top
20% of n-grams account for 76%, 58%, 51% for all instances
of 2, 3, and 4-grams, respectively. The corresponding value for
the top 20% of n-node GROUMS account for 81%, 73%, 72%
of instances of 2, 3, and 4-node graphs, respectively. The top
20% of graphs are 5, 15, 21 percentage points more frequent
than the top 20% of n-grams. Furthermore, the drop between
2-nodes and 3-nodes is much less than between 2-grams and
3-grams, indicating that graphs remain highly repetitive with
increasing size.

Table IV shows the complete distribution from 10% to 90%
for graphs and n-grams. The column at 20% is represented
in the Figure 4 but for space reasons we cannot show the
graphs as this would represent 18 lines. The table shows that
the pattern remains clear, with n-nodes being more left skewed
than n-grams. We conclude that graph representations are
more repetitive than sequential representations.
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for the y-axis% of the usages. For example, the top 20% of
the n-node graphs account for 80.6% of all usages. Graphs are
more repetitive than n-gram sequences.

D. Illustration of Graphs

We have quantitatively determined that GROUMS are more
repetitive and predictable than n-grams. In this section, we
provide illustrations of why they are more repetitive. For
example, an n-gram sequence will not capture the relationship
between File.open() and File.close(), because there
will always be other tokens, such as File.read(), between
these API calls. Although we removed SyntaxTokens in this
section, if they had been included the problem would be exacer-
bated because SyntaxTokens lie between all related API calls. In
contrast, GROUMS will always contain a data dependency edge
between File.open() and File.close() even when
internal classes are present. The temporal program flow will
still be captured by control edges.

A more complex example from our corpus of Java programs
illustrates the transformation of separate program code
fragments into a common abstract GROUM with 4-nodes.
The GROUM in Figure 5 represents the API usage pattern of
iterating through a java.util.HashMap with an enhanced
for loop. The GROUM is an abstract representation of
the code in Listings 1 to 4 as well 23 other classes in the
Neo4J project. Specifically, the GROUM contains the data
and control flow dependencies between Map.entrySet(),
Map.Entry.getKey(), Map.Entry.getValue(),
and an enhanced for loop. For example, in Listing 2 the
code iterates through a hashmap of tracked client sessions and
in Listing 1 the code iterates through a hashmap of throughput
reports.

Below we use the listings to show the important differences

Fig. 5: A GROUM representing iteration through a HashMap.
This graph is statistically common and is an abstraction of the
code in Listings 1 through 4.

between the GROUM and n-gram models.
Abstraction: From examining the listings, it is clear that

no sequential model would consider these code fragments as
identical. There are many internal classes and SyntaxTokens
between these API elements. Even when only API elements
are considered there would be no direct sequence with
Map.entrySet() preceding Map.Entry.getValue().
This relationship is only captured as a data dependency in a
graph.

Size: the size of the n-gram necessary to capture each
of these code fragments would be much larger than the 4-
node GROUM. For example, if we include SyntaxTokens, for
the respective listings we need sequences with 34, 32, 30,
and 38 tokens to represent the code in the listing. Without
SyntaxTokens the corresponding number of tokens is smaller
but still quite large at 14, 15, 13, and 15 tokens, respectively.

Graphs are also a more realistic representation of code than
sequential n-grams because compilers and humans do not
process code sequentially. Graphs are more appropriate for
statistical code recommendation because they can recommend
non-sequential relationships that cannot be represented in a
sequential model.

GROUMS capture information about the control and
data flow at a higher level of abstraction which makes
them a more repetitive representation of code than
sequences of tokens.

Listing 1: TransactionThroughputChecker.java
private void printThroughputReports(

PrintStream out ) {
out.println( "Throughput reports (tx/s):" );
for ( Map.Entry <String,Double> entry :

reports. entrySet() ) {

out.println( "\t" + entry. getKey() + " " +

entry. getValue() );
}
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out.println();
}

Listing 2: GlobalSessionTrackerState.java
public GlobalSessionTrackerState newInstance()

{
GlobalSessionTrackerState copy = new

GlobalSessionTrackerState();
copy.logIndex = logIndex;
for ( Map.Entry <MemberId,LocalSessionTracker>

entry : sessionTrackers. entrySet() ) {

copy.sessionTrackers.put( entry. getKey() ,

entry. getValue() .newInstance() );
}
return copy;
}

Listing 3: ListAccumulatorMigrationProgressMonitor.java
public Map<Strin\sectiong,Long> progresses() {
Map<String,Long> result = new HashMap<>();
for ( Map.Entry <String,AtomicLong> entry :

events. entrySet() ) {

result.put( entry. getKey() , entry.

getValue() .longValue() );
}
return result;
}

Listing 4: ExpectedTransactionData.java
private Map<Node,Set<String>> cloneLabelData(

Map<Node,Set<String>> map ) {
Map<Node,Set<String>> clone = new HashMap<>();
for ( Map.Entry <Node,Set<String>> entry : map

.entrySet() ) {
clone.put( entry. getKey() , new HashSet<>(

entry. getValue() ) );
}
return clone;
}

VII. LIMITATIONS AND VALIDITY

Limitations of graphs: To extract an AST from a large
number of projects we used Recoder [29]. Recoder, like the
PPA tool [14], has known limitations that lead to unknown
nodes in a graph. When a node is unknown we are unable
to generate a GROUM. For 2, 3, and 4-node graphs we have
4.5%, 8.0%, 10.6% of graphs that contain an unknown. These
percentages are inline with the 90% accuracy of the state-of-
the-art partial programs analysis and code snippets analysis
tools [14, 29, 43].

A second limitation is the computational expense of iden-
tifying isomorphic graphs using GROUMINER [33]. In this
work, we calculated GROUM sizes up to 4-nodes. Based on
our analysis, we have seen that the probability distribution of
graphs for 3-node and 4-nodes remain constant indicating that,
like n-grams, higher n-node graphs exhibit similar degrees of
repetition. Furthermore, since graphs are at a higher degree of

abstraction, fewer nodes are necessary to represent the same
block of code when compared to sequential n-grams.

Model Limitations: There are many natural language models
that deal with sequences of tokens: n-grams, skip-grams, RNN,
LSTM [16, 19, 49]. The goal of the basic research in this paper
is to understand the distribution of tokens in code corpora and
to understand if there is enough repetition to make interesting
statistical predictions. The model is less relevant to this work
than the repetition in the corpus as neural networks depend
upon this repetition as much as linear models. Since models
designed for natural language assume a sequential sequence of
tokens, they are not appropriate for code. We need to modify
the underlying unit for these models and modify them for
statistically-based abstract graph representations.

Reliability and External Validity: By examining a diverse
set of languages we increase the generalizability of our results.
Furthermore, in RQ1 our goal was to replicate previous work
and to ensure that our data and scripts produced consistent
results. We were successful in this replication, increasing the
validity of the data used in the novel work in subsequent
research questions. In our replication package [1], we have
included all processed n-gram and graph data as well as the
scripts used in our processing pipeline to allow other researches
to validate and extend our work.

Limitations of SelfCrossEntropy: In terms of entropy cal-
culations, SelfCrossEntropy is an extension of cross entropy
whereby 10-fold cross validation is used to calculate the per-
token average of the probability with which the language
model generates the test data [20]. Ideally, we would calculate
all possible combinations of the next token, however, as
Shannon [48] points out, this is impractical with O(tN ), where
t is the number of unique tokens and N is the total number of
tokens in the corpus. For each language in our corpus there
are over 300k unique tokens and 20 million total tokens. As
a result, SelfCrossEntropy serves as a good approximation of
entropy.

VIII. RELATED WORK

Research into language entropy.

Basic research into understanding redundancy and measuring
entropy in languages has a long history. Shannon [48] developed
statistical measures of entropy for the English language. Gabel
and Su [16] noted high levels of redundancy in code. Hindle
et al. [20] continued this work demonstrating that software is
highly repetitive and predictable. Recent works have replicated
these software findings on a giga-token corpus [2], looked at the
entropy in local code contexts [49], and applied neural network
models [19]. Others have examined repetition at the line
level [41] and in other domains such as Android Apps[4, 27]. In
each case, code has been found to be repetitive and predictable.
In our work, research question 1 replicates Hindle et al.’s work
expanding it to multiple programming languages. We noted
differences among programming languages and conjectured
that these differences may be due to syntax. Following NLP
practices of removing stopwords and punctuation, we remove
operators, separators, and keywords, and find that without these



Draf
t

highly repetitive tokens software is much less repetitive and
predictable (especially without separators). While we support
the general conclusion that code is repetitive and predictable,
we find that it is not much more repetitive than English. This
conclusion is important because it will reframe the ease with
which statistical predictions about software can be made.

Research on code validation and checking.

Most existing tools for finding defects and other code faults
use static analysis. Recent works have focused on using the
statistical properties of the languages to find bugs and to suggest
patches. For example, Campbell et al. [9] find that syntax errors
can be identified using n-gram language models. Ray et al. [40]
identified bugs and bug fixes in code because buggy code is
less natural and has a higher entropy. Santos and Hindle [47]
used the n-gram cross entropy of text in commit messages to
identify successfully commits that were likely to make a build
fail. Our research confirms that statistical code checking will
work much better on syntax or APIs than on internal classes
because these former types are much more repetitive.

Research into recommenders and autocompletions.

Modern IDEs contain an autocompletion feature that usu-
ally use the structure of the language to make suggestions.
Researchers working on code suggestion have long known
intuitively that code is repetitive. For example, textual similarity
of program code [3], commit messages [10], and API usage
patterns [30] have been exploited to guide developers during
their engineering activities. Building on this work, Zimmer-
mann et al. [53] used association rule mining on CVS data to
recommend source code that is potentially relevant to a given
change task. Recent work by Azad et al. [4] has extended this
work to make change rule predictions from a large community
of similar Apps and the code discussed on StackOverflow.

Advanced recommendation techniques have used the history
of applications and the repetitive nature of programming
to recommend code elements to developers. Robbes and
Lanza [44] filtered the suggestions made by code completion
algorithms, for example, based on where the developer had
been working in the past and the changes he or she had
made. Bruch et al. [6] recommend appropriate method calls
for a variable based on an existing code base that makes
similar calls to a library. Buse and Weimer [7] automatically
generate code snippets from a large corpus of applications that
use an API. Duala-Ekoko and Robillard [15] use structural
relationships between API elements, such as the method
responsible for creating a class, to recommend related elements
to developers. Works by Nguyen et al. [36] use statistical
language models to recommend code accurately. Nguyen and
Nguyen [32] expanded this work to graphs in order to create
recommendations that are syntactically valid. Much of this
work focuses on recommending API elements. Our work
suggests that API usages are substantially more repetitive and
predictable than general code, which explains the success of
API recommendation approaches. Furthermore, we show why
graphs are a more appropriate representation of code, and

we hope this will encourage future researchers to focus on
statistical graph abstractions instead of sequential tokens.

Research on statistical translation.

Recent works have mirrored the success of Statistical Ma-
chine Translation in natural languages, e.g., Google Translate,
and applied these approaches to translating English to code.
For example, SWIM [39] uses a corpus of queries from
Bing to align code and English and generates sequences of
API usages. DeepAPI [18] uses recurrent neural networks to
translate aligned source code comments with code to translate
longer sequences of API calls. T2API [34, 35] uses alignments
between English and code on StackOverflow to generate a
set of API calls. These calls are then rearranged based on
their usage likelihood in existing program graphs. T2API can
generate long graphs of common API usages from English.
Our work provides a frame in which to understand these works.
For example, the sequences of SWIM and DeepAPI tend to
be short and simplistic as they are restricted by a left-to-right
processing of tokens. In contrast, T2API which re-orders API
elements in a graph can produce more complex usages.

IX. CONCLUSION

Our findings confirm previous work that code is repetitive
and predictable. However, it is not as repetitive and predictable
as Hindle et al. [20] suggested. We have found that the
repetitive syntax of the program language makes software look
artificially much more repetitive than English. For example,
language specific SyntaxTokens account for 59% of the total
Java tokens in our corpus. We conclude that the researcher must
ensure that the corpus is tuned and cleaned for the prediction
task. If the goal is to recommend statistically tokens that are
related to complex software engineering tasks, for example,
completing a set of API calls, then suggesting SyntaxTokens,
such as semicolons, that are encoded as rules in a compiler,
will simply distract from more interesting recommendations.

We make our scripts, n-grams, and graphs available in our
replication package [1] and hope that our work will be used
by researchers to select appropriate corpora with sufficient
repetition. For example, we conducted a failed experiment to
suggest patches based on past fixes using an n-gram language
model. Had we had our current analysis there would have been
little need to conduct the experiment as it would be obvious
that internal class tokens and usages were too infrequent to
be used successfully in any statistical model. Future work to
complement static analysis with statistical models could allow
for appropriate recommendations even when a class is used
infrequently.

The success of API usage recommendations flows naturally
from our findings. By tuning the vocabulary to API code
tokens and examining the usage of these APIs element across
many programs there is sufficient repetition to make accurate
recommendations.

Software recommender tools are moving from simple single
element autocompletions to multi-element, non-sequential
recommendations of code blocks. Our work shows that different



Draf
t

representations of code have different degrees of repetition.
Graph representations allow for a higher degree of abstraction
and the data and control flow allow for non-sequential rela-
tionships. Furthermore, the abstract nature of graphs allows
for a more concise representation that reduces the number of
noise tokens in code predictions. Most abstract representations
of code are based on rule oriented ASTs. Although this work
is basic science and does not involve developing new tools
and techniques, we suggest that future work should focus on
new code representations that are tailored to statistical code
suggestion allowing for complex and useful recommendations.
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