
56	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Software inspection is a form
of formal peer review that has long
been recognized as a software engi-
neering “best practice.” However, the
prospect of reviewing a large, unfa-
miliar software artifact over a period
of weeks is almost universally dreaded
by both its authors and reviewers. So,

even though developers acknowledge
the value of formal peer review, many
also avoid it, and the adoption rates
for traditional inspection practices are
relatively low.1,2

On the other hand, peer review
is a prevalent practice on successful
open source software (OSS) projects.

We examined more than 100,000
peer reviews in OSS case studies of
the Apache httpd server, Subversion,
Linux, FreeBSD, KDE, and Gnome
and found an efficient fit between
OSS developers’ needs and the mini-
malist structures of their peer review
processes.3 Specifically, the projects
broadcast changes asynchronously to
the development team—usually on a
mailing list—and reviewers self-select
changes they’re interested in and com-
petent to review. Changes failing to
capture a reviewer’s interest remain
unreviewed. Developers manage what
can be an overwhelming broadcast
of information by relying on simple
email filters, descriptive email sub-
jects, and detailed change logs. The
change logs represent the OSS proj-
ect’s heart beat, through which de-
velopers maintain a conceptual un-
derstanding of the whole system and
participate in the threaded email dis-
cussions and reviews for which they
have the required expertise.

The OSS process evolved naturally
to fit the development team and con-
trasts with enforced inspections based
on best practices that are easily mis-
applied and end in false quality assur-
ances, frustrated developers, and lon-
ger development cycles. As Michael
Fagan, the father of formal inspection,
lamented about the process he devel-
oped, “Even 30 years after its creation,
it is often not well understood and
more often, poorly executed.”1

In this article, we contrast OSS peer
review with a traditional inspection
process that’s widely acknowledged
in the literature—namely, inspections
performed on large, completed soft-
ware artifacts at specific checkpoints.
The inspectors are often unfamiliar
with the artifact under inspection,
so they must prepare individually be-
fore the formal review by thoroughly
studying the portion of code to be re-
viewed. Defects are recorded subse-

Contemporary
Peer Review
in Action:
Lessons from Open Source
Development

Peter C. Rigby, Concordia University, Montreal, Canada

Brendan Cleary, University of Victoria, Canada

Frederic Painchaud, Department of National Defence, Canada

Margaret-Anne Storey and Daniel M. German, University of Victoria,
Canada

// Open source development uses a rigorous but

agile review process that software companies

can adapt and supplement as needed by

popular tools for lightweight collaboration and

nonintrusive quality assurance metrics. //

Feature: Software Reviews

	 November/December 2012 | IEEE Software � 57

quently at the formal review meeting,
but the task of fixing a recorded defect
falls to the author after the meeting.

Some intrinsic differences between
open source and proprietary develop-
ment projects, such as self-selected
versus assigned participation, suggest
inspection processes at opposite ends
of a continuum (see Figure 1). How-
ever, neither formality nor aversion is
fundamental to peer review. The core
idea is simply to get an expert to ex-
amine your work to find problems you
can’t see. Success in identifying defects
depends less on the process than on
the expertise of the people involved.4

We present five lessons from OSS
projects that we think are transferable
to proprietary projects. We also pres-
ent three recommendations for adapt-
ing these practices to make them more
traceable and appropriate for propri-
etary organizations, while still keep-
ing them lightweight and nonintrusive
for developers.

Lesson 1:
Asynchronous Reviews
Asynchronous reviews support team
discussions of defect solutions and find
the same number of defects as colo-
cated meetings in less time. They also
enable developers and passive listeners
to learn from the discussion.

Managers tend to believe that de-
fect detection and other project benefits
will arise from colocated, synchronous
meetings. However, in 1993, Lawrence
Votta found that reviewers could dis-
cover almost all defects during their in-
dividual preparations for an inspection
meetings, when they study the portion
of code to be reviewed.5 Not only did
the meetings generate few additional
defects, but the scheduling for them ac-
counted for 20 percent of the inspec-
tion interval, lengthening the develop-
ment cycle.

Subsequent studies have replicated
this finding in both industrial and re-

search settings. This led to tools and
practices that let developers interact in
an asynchronous, distributed manner.
Furthermore, the hard time constraints
imposed by colocated meetings, the
rigid goal of finding defects, and the
sole metric of defects found per line
of source code encouraged a mentality
of “Raise issues, don’t resolve them.”2
This mentality limits a group’s ability
to collectively solve problems and men-
tor developers.

By conducting asynchronous re-
views and eliminating rigid inspection
constraints, OSS encourages synergy
between code authors, reviewers, and
other stakeholders as they discuss the
best solution, not the existence of de-
fects. The distinction between author
and reviewer can blur such that a re-
viewer rewrites the code and an author
learns from and becomes a reviewer of
the new code.

Lesson 2:
Frequent Reviews
The earlier a defect is found, the bet-
ter. OSS developers conduct all-but-
continuous, asynchronous reviews that
function as a form of asynchronous
pair programming.

The longer a defect remains in an ar-
tifact, the more embedded it becomes
and the more it will cost to fix. This
rationale is at the core of the 35-year-
old Fagan inspection technique.1 How-
ever, the term “frequent” in traditional

inspection processes means that large,
completed artifacts are inspected at
specific checkpoints that might occur
many months apart. The calendar time
to inspect these completed artifacts is
on the order of weeks.

In contrast, most OSS peer re-
views begin within hours of complet-
ing a change, and the full review dis-
cussion—which involves multiple
exchanges—usually takes one to two
days. Indeed, the feedback cycle is so
fast, we consider it a form of continu-
ous review, which often has more simi-
larities with pair programming than
with inspection.6

To illustrate, we quote Rob Har-
till, a former core developer of the
Apache project and a founding devel-
oper of the Internet Movie Database:
“I think the people doing the bulk of
the committing appear very aware of
what the others are committing. I’ve
seen enough cases of hard-to-spot ty-
pos being pointed out within hours of
a commit.”

Lesson 3:
Incremental Review
Reviews should be of changes that are
small, independent, and complete.

The development of large software
artifacts by individuals or relatively iso-
lated developer groups means that the
artifacts are unfamiliar to the review-
ers tasked with inspecting them. Da-
vid Parnas and David Weiss first noted

Inspection software
reviews

Asynchronous,
tool-supported reviews

Open source
software reviews

Formal but
cumbersome

Measureable
but lightweight

Minimalist but
lacks traceability

Figure 1. The spectrum of peer review techniques, from formal inspection to minimal-

process OSS review. Tool-supported, lightweight review provides a flexible but traceable

middle ground.

58	 IEEE Software | www.computer.org/software

Feature: Software Reviews

that the resulting inspections are done
poorly by unhappy, unfocused, over-
whelmed inspectors.7

To facilitate early and frequent
feedback, OSS projects tend to review
smaller changes than proprietary proj-
ects,8 ranging from 11 to 32 lines in
the median case.3 The small size lets
reviewers focus on the entire change,
and the incrementality reduces review-
ers’ preparation time and lets them
maintain an overall picture of how the
change fits into the system.

Equally important is the OSS di-
vide-and-conquer review style that
keeps each change logically and func-
tionally independent. For example,
a change that combines refactoring
a method with fixing a bug in the
refactored method won’t be reviewed
until it’s divided into two changes.
Developers can either submit these
independent changes as a sequence of
conceptually related changes or com-
bine them on a single topic or fea-
ture branch. Although one developer
might have all the required expertise
to perform the review, it’s also pos-
sible that one person will have the
required systemwide expertise to un-
derstand the refactoring and another
will have detailed knowledge of a par-
ticular algorithm that contains the
bug fix. Intelligently splitting changes
lets stakeholders with different exper-
tise independently review aspects of a
larger change, which reduces commu-
nication and other bottlenecks.

Finally, changes must be complete.
Discussing each solution step in a small
group can be very effective, but it can
be also be tiring. Furthermore, certain
problems can be more effectively solved
by a single focused developer. Pair pro-
gramming involves two people in each
solution step, but with frequent asyn-
chronous reviews, reviewers only see
incremental changes that the author
feels are small, independent, and com-
plete solutions.

Lesson 4: Invested,
Experienced Reviewers
Invested experts and codevelopers
should conduct reviews because they
already understand the context in
which a change is being made.

Without detailed knowledge of the
module or subsystem, reviewers can’t
reasonably be expected to understand
a large, complex artifact they’ve never
seen before. Checklists and reading
techniques might force inspectors to
focus during an inspection,7 but they
won’t turn a novice or incompetent in-
spector into an expert.

The developers involved in OSS re-
view tend to have at least one to two
years’ experience with the project; many
reviewers have more than four years,
and a few have been with the project
since its inception.3 In the OSS projects
we studied, we also found that main-
tainers of a particular code section pro-
vided detailed reviews when another de-
veloper made a change. The maintainer
often had to interact with, maintain, or
evolve the changed code. Because code-
velopers depend on each other, they
have a vested interest in ensuring that
the quality of changes is high. Further-
more, because codevelopers are already
experts in part of the system under re-
view, they take less time to understand
how a small change affects the system.

Although codevelopers have the
highest level of investment, many or-
ganizations can’t afford to keep more
than one developer working on the
same part of a software system. A sim-
ple alternative is to assign regular re-
viewers to particular subsystems. The
reviewers aren’t responsible for mak-
ing changes, but they follow and review
changes incrementally. This technique
also spreads the knowledge across the
development team, mitigating the risk
of “getting hit by a bus.”

In a small start-up organization, any
review costs can be prohibitive. One
of the authors of this article, Brendan

Cleary, solved this problem in his com-
pany with what he called a “reviewer
as bug fixer” strategy, in which he pe-
riodically assigned one developer to
fix a bug in another developer’s code.
As a bug fixer, the developer becomes
a codeveloper as he or she reads, ques-
tions, understands, and reviews the
bug-related code. This technique com-
bines peer review with the primary task
of fixing bugs. It also helps manage
turnover risk by giving all developers
a broader understanding of the system.

In Table 1, we use the literature and
our research findings to compare five
reviewer types.

Lesson 5: Empower
Expert Reviewers
Let expert developers self-select
changes they’re interested in and com-
petent to review. Assign reviews that
nobody selects.

Poorly implemented, prescriptive,
heavyweight processes can give the il-
lusion of following a best practice while
realizing none of the advertised ben-
efits. Just as checklists can’t turn nov-
ices into experts, a formal process can’t
make up for a lack of expertise. Adam
Porter and his colleagues reported that
the most important predictor of the
number of defects detected during re-
view is reviewer expertise; the process
has minimal impact.4

In a development environment
where the artifact author or manager
assigns reviews, it can be difficult to
know who should perform a review
and how many reviewers to involve.
The candidates’ expertise must be bal-
anced with their workloads and other
factors. A rule-of-thumb in the inspec-
tion literature is that two reviewers
find an optimal number of defects—
the cost of adding more reviewers isn’t
justified by the number of additional
defects detected.9 In OSS, the median
is two reviewers per review. These
reviewers aren’t assigned; instead,

	 November/December 2012 | IEEE Software � 59

broadcasting and self-selection lead to
natural load balancing across the de-
velopment team.

Dictating a constant number of re-
viewers for each change ignores the dif-
ference between a simple change that
one reviewer can rubber stamp and a
complex one that might require a dis-
cussion with the whole development
team. The advantage of self-selection is
that it’s up to the developers, who have
the most detailed knowledge of the sys-
tem, to decide on the level of review
given to each change.

On the other hand, self-selection
can end in some changes being ignored.
Managers can use tools to automati-
cally assign unreviewed changes to re-
viewers. However, unselected changes
might indicate areas of the code base
that pose a problem, such as areas that
only a single developer understands.

Recommendation 1:
Lightweight Review Tools
Tools can increase traceability for man-
agers and help integrate reviews with
the existing development environment.

OSS developers rely on information
broadcast and use minimalistic tool
support. For example, the Linux Ker-
nel Mailing List has a median of 343
messages per day, and the OSS devel-
opers we interviewed received thou-
sands of messages per day.10 There

are techniques to manage this email
barrage, but it’s difficult to track the
review process for reporting and qual-
ity assurance, and it’s easy to inadver-
tently ignore reviews. Furthermore,
the frequency of small changes can
lead to fragmentation, which makes it
difficult to find and review a feature
that consists of multiple changes.

Tools can help structure reviews and
integrate them with other development
systems. Typically, they provide

•	 side-by-side highlighted changes to
files (diffs);

•	 inline discussion threads that are
linked to a line or file;

•	 capability to hide or show addi-
tional lines of context and to view a
diff in the context of the whole file;

•	 capability to update the code under
review with the latest revision in
the version control system;

•	 a central place to collect all arti-
facts and discussions relating to a
review;

•	 a dashboard to show pending re-
views and alert code authors and
reviewers who haven’t responded to
assignments;

•	 integration with email and develop-
ment tools;

•	 notification and assignment of re-
views to individuals and groups of
developers; and

•	 metrics to gauge review efficiency
and effectiveness.

Table 2 compares some popular peer
review tools.

Recommendation 2:
Nonintrusive Metrics
Mine the information trail left by
asynchronous reviews to extract light-
weight metrics that don’t disrupt devel-
oper workflow.

Metric collection is an integral part
of controlling, understanding, and di-
recting a software project. However,
metric collection can disrupt develop-
ers’ workflows and get in the way of
their primary task to produce software.

For example, formally recording a
defect is a cognitively expensive task,
sidetracking developers who are dis-
cussing a change and forcing them to
formally agree on and record a defect.
Tool support doesn’t fix this problem.
At AMD, Julian Ratcliffe found that
defects were underreported despite
the simple CodeCollabotor reporting
mechanism: “A closer look at the re-
view archive shows that reviewers were
mostly engaged in discussion, using the
comment threads to fix issues instead
of logging defects.”11

Is the defect or the discussion more
important? In the Linux commu-
nity, the amount of discussion on a

Ta
b

l
e

 1 Reviewer types and their costs, investment level in the code, review quality, and amount
of knowledge transfer and community development that occurs during the review.

Reviewer type Cost Investment Quality Team building

Independent reviewer Very high Low Medium Low

Pair programming Very high Very high High High

Codeveloper reviewer High High High High

Regular incremental reviewer Medium Medium Medium Medium

Reviewer as bug fixer Low Medium Low Medium

60	 IEEE Software | www.computer.org/software

Feature: Software Reviews

particular change is an indicator of
code quality. Indeed, Linus Torvalds,
who maintains the current release on
the Linux operating system, has re-
jected code, not because it’s incorrect,
but because not enough people have
tried it and discussed it on the mailing
list. To Torvalds, the potential system
benefit of accepting code that hasn’t
been discussed by a group of experts
doesn’t outweigh the risks.

Turning the amount of discussion
during a review into a metric is trivial
if a tool records discussions and asso-
ciates them with file changes. On this
basis, a manager might ask developers
whether they think the group has ade-
quately discussed a part of the system
before its release. In our work, we’ve
demonstrated the extraction of many
nonintrusive, proxy metrics from re-
view archives.12

Recommendation 3:
Implementing
a Review Process
Large, formal organizations might
benefit from more frequent reviews
and more overlap in developers’ work
to produce invested reviewers. How-
ever, this style of review will likely be
more amenable to agile organizations

that are looking for a way to run large,
distributed software projects.

OSS has much in common with
agile development and the Agile
Manifesto:13,14

•	 a preference for working software
over documentation and for em-
powering individuals over imposing
a rigid process;

•	 handling changes by working in
small increments rather than fol-
lowing a rigid plan; and

•	 working closely with the customer
rather than negotiating contracts.

The most striking difference be-
tween the development methodolo-
gies is that agile supports small, co-
located developer teams, while OSS
projects can scale to large, distributed
teams that rarely, if ever, meet in a co-
located setting. OSS projects broad-
cast all communication—discussions,
code changes, and reviews—to the en-
tire community. The need for the entire
community to see all communication
is so strong that when a company pays
colocated developers to work on an
OSS project, it often requires them to
summarize and broadcast all in-person
discussion to the community.

Software developers in most de-
velopment companies are accustomed
to communicating in person, so they
might not welcome this practice. How-
ever, peer review has proved more ef-
fective in an asynchronous environment
than in a synchronous, colocated one.
Companies with large, distributed de-
velopment teams might consider using
frequent, asynchronous reviews involv-
ing codeveloper discussions of small,
functionally independent changes as a
substitute for pair programming.

P ractitioners from both the OSS
community and software com-
panies have driven the devel-

opment of lightweight peer review and
supporting tools. OSS practices have
evolved to maintain code quality ef-
ficiently within a distributed develop-
ment group, and many companies are
already adopting a lightweight, tool-
supported review approach, including
AMD11 and Cisco.15 We’re currently
working with the Canadian defense
department to develop an agile review
style that fits its development teams.
We’re also actively seeking collabora-
tions with developers and companies
who use a lightweight peer review. Our

Ta
b

l
e

 2 Comparison of some popular peer review tools.

Tool Main advantages Main disadvantages

CodeCollaborator Supports instant messaging-style discussion of LOC, metric
reporting, and tight integration with multiple development
environments, such as Eclipse and Visual Studio

Commercial license fee

Crucible Integrates with the Jira bug tracker and other Atlassian
products

Commercial license fee

ReviewBoard Has a free, full-featured Web interface for review Requires setup and maintenance on an in-house server

Rietveld Runs on top of Google App Engine, so it’s quick and easy to
start reviewing; supports Subversion development (Gerrit is
a git-specific implementation of Rietveld)

Requires public hosting on Google Code or setting up the
review system on an in-house server

CodeStriker Has a Web interface that supports traditional inspection An older tool that lacks good support for lightweight review
techniques

	 November/December 2012 | IEEE Software � 61

goal is provide a systematic and prac-
tical understanding of contemporary
peer review.

References
	 1.	 M. Fagan, “A History of Software Inspec-

tions,” Software Pioneers: Contributions to
Software Engineering, Springer, 2002, pp.
562–573.

	 2.	 P.M. Johnson, “Reengineering Inspection,”
Comm. ACM, vol. 41, no. 2, 1998, pp. 49–52.

	 3.	 P.C. Rigby, “Understanding Open Source
Software Peer Review: Review Processes,
Parameters and Statistical Models, and Un-
derlying Behaviours and Mechanisms,” 2011;
http://thechiselgroup.org/rigby-dissertation.
pdf.

	 4.	 A. Porter et al., “Understanding the Sources
of Variation in Software Inspections,” ACM
Trans. Software Eng. Methodology, vol. 7, no. 1,
1988, pp. 41–79.

	 5.	 L.G. Votta, “Does Every Inspection Need a
Meeting?” SIGSOFT Software Eng. Notes, vol.
18, no. 5, 1993, pp. 107–114.

	 6.	 L. Williams, “Integrating Pair Programming
into a Software Development Process,” Proc.
14th Conf. Software Eng. Education and Training,
IEEE, 2001, pp. 27–36.

	 7.	 D.L. Parnas and D.M. Weiss, “Active Design
Reviews: Principles and Practices,” Proc. 8th
Int’l Conf. Software Eng. (ICSE 85), IEEE CS,
1985, pp. 132–136.

	 8.	 A. Mockus, R.T. Fielding, and J. Herbsleb,
“Two Case Studies of Open Source Software
Development: Apache and Mozilla,” ACM
Trans. Software Eng. and Methodology, vol. 11,
no. 3, 2002, pp. 1–38.

	 9.	 C. Sauer et al., “The Effectiveness of Software
Development Technical Reviews: A Behavior-
ally Motivated Program of Research,” IEEE
Trans. Software Eng., vol. 26, no. 1, 2000, pp.
1–14.

	10.	 P.C. Rigby and M.-A. Storey, “Understand-
ing Broadcast Based Peer Review on Open
Source Software Projects,” Proc. 33rd Int’l
Conf. Software Eng. (ICSE 11), ACM, 2011, pp.
541–550.

	11.	 J. Ratcliffe, “Moving Software Quality
Upstream: The Positive Impact of Lightweight
Peer Code Review,” Proc. Pacific NW Software
Quality Conf. (PNSQC 09), 2009, pp. 171–180;
www.pnsqc.org/past-conferences/2009-con-
ference.

	12.	 P.C. Rigby, D.M. German, and M.-A. Storey,
“Open Source Software Peer Review Practices:
A Case Study of the Apache Server,” Proc. 30th
Int’l Conf. Software Eng. (ICSE08), IEEE CS,
2008, pp. 541–550.

	13.	 K. Beck et al., The Agile Manifesto, 2001;
http://agilemanifesto.org.

	14.	 S. Koch, “Agile Principles and Open Source
Software Development: A Theoretical and Em-
pirical Discussion,” Extreme Programming and
Agile Processes in Software Eng., LNCS 3092,

J. Eckstein and H. Baumeister, eds., Springer
2004, pp. 85–93.

	15.	 J. Cohen, Best Kept Secrets of Peer Code Review,
white paper, Smart Bear, 2006; http://
smartbear.com/solutions/white-papers/
best-kept-secrets-of-peer-code-review

Peter C. Rigby is an assistant professor of software engineering at
Concordia University in Montreal, Canada. His research interests focus
on understanding how developers collaborate to produce successful
software systems. Rigby received his PhD in computer science at the
University of Victoria, and the lessons and recommendations reported
in this article are largely based on his dissertation. Contact him at
peter.rigby@concordia.ca.

Brendan Cleary is a research fellow at the University of Victoria.
His research interests focus on managing commercial and research
projects, and he’s the founder of a university spin-out company. Cleary
has a PhD in computer science from the University of Limerick, Ireland.
Contact him at bcleary@ uvic.ca.

Frederic Painchaud is a defence scientist at Defence Research
and Development Canada and a part-time PhD student in computer
science at Université Laval. His research interests include software
architectural risk analysis, static and dynamic code analysis, and
lightweight peer review. Painchaud has a master’s degree in computer
science from Université Laval. Contact him at frederic.painchaud@
drdc-rddc.gc.ca.

Margaret-Anne Storey is a professor of computer science and
a Canada research chair in human-computer interaction for soft-
ware engineering at the University of Victoria, Canada. Her research
interests center on technology to help people explore, understand,
and share complex information and knowledge. Storey received her
PhD in computer science from Simon Fraser University. Contact her at
mstorey@uvic.ca.

Daniel M. German is an associate professor of computer science
at the University of Victoria, Canada. His research areas are open
source software engineering and the impact of copyright in software
development. German received his PhD in computer science from
the University of Waterloo, Canada. Contact him at dmg@uvic.ca or
through his website at turingmachine.org.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

