
Improving Bug Triaging with High Confidence
Predictions at Ericsson

Aindrila Sarkar
Department of Computer Science

and Software Engineering
Concordia University

Montreal, Canada
Email: to.aindrila1989@gmail.com

Peter C. Rigby
Department of Computer Science

and Software Engineering
Concordia University

Montreal, Canada
Email: peter.rigby@concordia.ca

Béla Bartalos
Ericsson

Budapest, Hungary
Email: bela.bartalos@ericsson.com

Abstract—Correctly assigning bugs to the right developer or
team, i.e. bug triaging, is a costly activity. A concerted effort
at Ericsson has been done to adopt automated bug triaging to
reduce development costs. In this work, we replicate the research
approaches that have been widely used in the literature. We apply
them on over 10k bug reports for 9 large products at Ericsson.
We find that a logistic regression classifier including the simple
textual and categorical attributes of the bug reports has the
highest precision and recall of 78.09% and 79.00%, respectively.

Ericsson’s bug reports often contain logs that have crash
dumps and alarms. We add this information to the bug triage
models. We find that this information does not improve the
precision and recall of bug triaging in Ericsson’s context.

Although our models perform as well as the best ones reported
in the literature, a criticism of bug triaging at Ericsson is that
the accuracy is not sufficient for regular use. We develop a novel
approach where we only triage bugs when the model has high
confidence in the triage prediction. We find that we improve the
accuracy to 90%, but we can make predictions for 62% of the
bug reports.

Index Terms—Bug Triaging, Machine Learning, Log Analysis,
Incremental Learning

I. INTRODUCTION

Bug fixing is an integral part of development and mainte-
nance phase in the lifecycle of a software project. Large critical
software projects must deal with customer bugs quickly. The
first step in the process is to triage the bug by assigning it to
the team or developer that can fix the bug. The large volume
of bug reports submitted daily makes manual bug triaging a
time-consuming process. Furthermore, when a bug is assigned
to the wrong team or developer, the cost and time to fix the
bug is increased. We conduct a case study at Ericsson, which
has a significant number of internal and external bug reports
submitted daily. Ericsson uses a bug tracking system developed
at Ericsson. The first level of triage involves routing the bug
reports to an appropriate team. Human triagers do this job
manually.

In this paper, we focus on automation of assigning the bug
reports to the correct team. There is a large and diverse related
work including approaches based on machine learning [3] [8]
[18] [14], social network analysis [26] [31] [12], experience
model of developers [24] [30] [21] [28], and mining software
repository [20] [16] [19] [22]. The majority of previous works

address bug assignment to individual developers. In contrast,
at Ericsson, bugs are assigned to the development teams not
the developers and we assign bugs to 43 teams.

We apply a simple machine learning approach to assign bug
reports at Ericsson. Selection of the features is very important
for supervised machine learning. The majority of triaging
techniques in the past use text descriptions of bug reports [3]
[8] [6] and categorical attributes, including product, compo-
nent, severity [18] [5] [14] [11]. In our work, we find that
right selection of categorical features combined with textual
contents is effective. We also explore additional information
from the alarm logs and crash dumps attached to the bug
reports. Furthermore, unlike many works in the past that use
cross validation or a small test dataset for evaluation, we use
more realistic time split validation to evaluate our techniques.

Although our models have a comparable accuracy to other
large scale bug triaging research works, they were not suffi-
cient for regular use at Ericsson. While we can suggest the
top N developers and improve our accuracy, this approach
still requires manual triage effort to decide among the top
suggestions. Instead, we decide to only triage those bug reports
for which the model has high prediction confidence. Using this
approach we are able to attain a high accuracy and reduce the
manual effort by over half.

RQ1. Replication: How well do existing bug triaging
approaches, which contain textual and categorical features,
work at Ericsson?

The most common bug triage models contain the texts
of the bug report, e.g., summary, description and categorical
features, e.g., product, severity. We find that a model with these
simple attributes has a precision and recall of 78.09% and
79%, respectively. The categorical features have the strongest
predictive power.

RQ2. Alarms and Crash Dumps: Does the information
contained in alarm logs and crash dumps help in bug triaging?

Bug reports often contain crash dumps and other log in-
formation. We make a novel contribution by determining how
well this data helps in bug triaging. Alarm logs and crash
dumps are available for only 51.17% and 5.52% of all bug
reports. Even when we train the models with the subset of
bug reports that contain the alarms, there is no improvement



in the precision and recall when compared with the model that
contains only the textual and categorical features.

RQ3. High Confidence Predictions: What is the impact
of high confidence prediction on the accuracy of triaging?

At Ericsson, even the highest precision and recall values
were too low to be used in production. Previous works have
dealt with this issue by suggesting the top N developers.
Although we have a top 3 accuracy above 90%, Ericsson did
not like this approach because it still requires manual interven-
tion. Jonsson et al. [15] first introduce the concept of using
prediction confidence for identifying the faulty components
from the bug reports. We introduce this novel approach in
the context of bug triaging by assigning the bug reports when
the model has high confidence in the prediction. We find that
when the model is 90% confident in the result, we are able to
triage the bug reports with a precision and recall of 89.75%
and 90.17%, respectively. However, we only triage 61.71% of
the total bug reports.

This paper is structured as follows. In Section II, we
describe the existing bug triaging models. In Section III
we explain the testing and triaging process of Ericsson. In
Section III we also describe our case study dataset and the
methodology of our approach. In Section IV, V, VI we
present the results. In Section VII we describe the threats to
validity. Finally in Section VIII we conclude our work.

II. RELATED WORK

In this section, we discuss the related work on the basis
of the recommendation technique, different attributes of the
bug reports used to train the model, evaluation metric, results
and evaluation setup. We present the results of these previous
works for their top1 recommendation. Although researchers
have also reported the results for topN recommendation.
Table I provides a summary of the related works.

The fixer recommendation techniques used in the previous
works explore a wide range of approaches including machine
learning (ML), bug tossing graph models, mining software
repositories (MSR), social network analysis and developers’
activity models. We divide the previous works in these 5
categories. Information retrieval (IR) techniques have been
widely used in almost all the categories. A significant number
of researchers use the common IR approach of Term Fre-
quency multiplied by inverse document frequency (TF-IDF)
to vectorize the texts. Some authors have also used other IR
techniques including Latent Semantic Indexing (LSI) to reduce
the dimensions of term vectors. Latent Dirichlet Allocation
(LDA), a popular topic modelling algorithm has also been used
by many authors. Some researchers have also used natural
language processing (NLP) techniques to mine informative
terms from the texts.

A. ML techniques

Previous works investigate different techniques with a ma-
jority of them analyzing textual information of the bug reports.
A wide variety of classifiers including Decision Tree, SVM,
Naive Bayes and ensemble classifier has been used in the

previous works. Recent works also investigate the use of
deep learning techniques such as convolutional neural network
(CNN) with Word2Vec as the word embedding technique.

The early work by Anvik et al. [3] vectorize the text of
the summary and description by normalized TF-IDF and use
Naive Bayes, SVM and C4.5 to identify an appropriate fixer.
In a later work [4], they generalize beyond a single fixer to
recommend components and other potential developers. They
achieve a maximum precision and recall of 64% and 10%
respectively.

Lin et al. [18] perform an empirical study on bug assignment
in industrial projects. They vectorize the textual contents with
TF-IDF and train a SVM classifier. They also explore the
categorical fields of the bug reports and use decision tree
which outperforms SVN. They achieve an accuracy of 77.64%.

Banitaan et al. [5] propose an approach by using both of text
and categorical attributes. They use traditional TF-IDF and Chi
Square for feature selection. Using Naive Bayes they achieve
a precision and recall of 66.6% and 63.8% respectively.

Canfora et al. [8] use probabilistic textual similarity for
change request (CR) assignment. For every developer they
build a descriptor (i.e. vector of terms) using short and
long description of the CRs that the developer has fixed.
The probabilistic model compares the new CR descriptor to
developer descriptors to recommend the fixers. They achieve
a recall of 59%.

Ahsan et al. [1] investigate the use of the LSI for reduction
of dimensions of term vectors. They combine this with various
classifiers and get the best results with SVM. The accuracy,
precision and recall they achieve are 44.4%, 37% and 35%
respectively.

Jonsson et al. [14] use ensemble learning to combine the
outcome of multiple classifier in a single recommender. To
train the individual classifier, they use the textual contents and
categorical attributes of the bug reports of industrial projects.
The best accuracy they achieve using 10 fold cross validation is
85%. Although, when they evaluate using time split validation,
best accuracy is 65%.

Florea et al. [11] develop a spark based fixer recommender
system. Using NLP they only preserve nouns from the texts
and use TF-IDF for vectorization. They also use other at-
tributes including product and component. SVM with liblinear
outperforms others on their dataset. They achieve a precision
and recall of 89% and 88% evaluating on a small test dataset.

Lee et al. [17] use convolutional neural network (CNN)
with Word2Vec on text. The highest accuracy they achieve is
85% for industrial projects and 46% for open source projects.
Chen et al. [9] extend this work on incident triaging and
perform a comparative study among deep learning, supervised
classifiers, KNN, topic modelling, tossing graph and fuzzy
based techniques. The highest accuracy they achieve using
deep learning is 71%.

B. Bug Tossing

The reassignment of a bug that has been incorrectly triaged
first time, i.e. bug tossing, has been studied by some re-



TABLE I
COMPARISON OF PREVIOUS WORKS: TECHNIQUES, ATTRIBUTES, EVALUATION METHODS, AND RESULTS

Author Technique Attributes Used Best Result Evaluation
ML based Others Textual Nominal Others Accuracy Precision Recall F Score

Anvik et al.
[3]

SVM with TF-IDF - Summary,
Description

- - - 64%
(top1)

10%
(top1)

- On fixed test
data

Lin et al.
[18]

SVN, Decision Tree - Summary,
Description

Module,
Phase,
Priority

- 77.64%
(top1)

- - - 10 fold cross
validation

Banitaan et
al. [5]

Naive Bayes with
TF-IDF & Chi-
Square

- Summary,
Description

Reporter,
Compo-
nent

- - 66.6%
(top1)

63.8%
(top1)

- 5 fold cross
validation

Canfora et
al. [8]

- Probabilistic IR Summary - - - - 59%
(top1)

- On fixed test
data

Ahsan et al.
[1]

SVM with TF-IDF
& LSI

- Summary,
Description

- - 44.4%
(top1)

37%
(top1)

35%
(top1)

- On fixed test
data

Jonsson et
al. [14]

Ensemble stacked
generalizer

- Summary,
Description

Submitter,
Site,
Revision,
Priority

- 85%
(top1)
65%
(top1)

- - - 10 fold
cross,
Time split
validation

Florea et al.
[11]

SVM with Liblin-
ear, TF-IDF & chi-
square

- Summary,
Description

Product,
Compo-
nent

- - 89%
(top1)

88%
(top1)

- On small test
data

Jeong et al.
[13]

- ML with Bug Toss-
ing Graph

Summary,
Description

- - 77.14%
(top5)

- - - On fixed test
data

Bhattacharya
et al. [7]

- ML with multi fea-
ture bug tossing

Summary,
Description

Product,
Compo-
nent

- 38.03%
(top1)

- - - Time split
validation

Matter et al.
[20]

- Similarity of vocab-
ulary by IR

- - source
code,
commits

34%
(top1)

- - - On fixed test
data

Kagdi et al.
[16]

- MSR for source
codes predicted by
IR

Description - Source
code,
Commits

94%
(top1)

- - - On small test
set (18)

Shokripour
et al. [23]

- MSR for files
predicted by phrase
similarity

Summary,
Description

- - - - 31%
(top1)

- -

Shokripour
et al. [22]

- MSR for source
codes predicted by
NLP

Summary,
Description

- source
codes,
commits

48.23%
(top1)

- - - On fixed test
data

Linares et
al. [19]

- Authors of source
codes predicted by
IR techniques

Summary,
Description

- source
codes

- 63% 64% - On fixed test
data

Zhang et al.
[31]

- ML & social net-
work analysis

Summary,
Description,
Comments

Components - 43.98%
(top1)

- - - Time split
validation

Hu et al.
[12]

- Social network of
developer, code
component & bug

Summary,
Description

- Commits,
Change
sets

- - 42.36%
(top1)

- Time split
validation

Zhang et al.
[31]

- IR & social network
analysis

Summary,
Description,
Comments

- - - - - 25%
(top 1)

Time split
validation

Tamrawi et
al. [24]

- Developer’s exper-
tise via fuzzy set

Summary,
Description

- - 51.2%
(top1)

- - - Time split
validation

Wang et al.
[25]

- Caching developer’s
component level ac-
tivities

- Component - 54.32%
(top1)

- - - Time split
evaluation

Zhang et al.
[30]

- Topic modelling &
correlation with bug
reporter

Summary,
Description

Reporter - - - - 71%
(top1)

On fixed test
data

Naguib et
al. [21]

- Topic Modelling &
developer’s activity
profile

Summary,
Description

Component - 30%
(top 1)

- - - On fixed test
data

Yang et al.
[28]

- Using topic mod-
elling & developer’s
expertise score

Summary,
Description

Product,
Com-
ponent,
Priority

- 63%
(top1)

- - - On fixed test
data

Xia et al.
[27]

- Multi feature topic
modelling

Summary,
Description

Product,
Compo-
nent

- 68.68%
(top1)

- - - Time split
validation

Lee et al.
[17]

- CNN with
Word2Vec

Summary,
Description

- - 85%
(top 1)

- - - - Fixed test
data

Chen et al.
[9]

SVM, KNN, NB,
CNN

Topic Modelling,
Tossing Graph,
Fuzzy Set

Summary,
Description

- - 71%
(top 1)

- - - Fixed test
data

Sarkar et al. Logistic regression
with TF-IDF

- Summary,
Description

Multiple
e.g.,
Product

Machine
dumps

- 78.09%
(top 1)

79.00%
(top1)

- Time split
validation



searchers.
Jeong et al. [13] introduce the idea of using markov model

based bug tossing graphs to recommend fixers of a bug. They
use Naive Bayes and Bayesian Networks with TF-IDF and
integrate tossing graph information into the prediction of the
classifiers. The best accuracy they achieve is 77.14% for top5
recommendation. Bhattacharya et al. [7] extend this work by
using categorical features including product and component of
the bug reports. They use these features to train the classifier
and also into the tossing graph. For top 1 recommendation,
they achieve an accuracy of 38.03%

C. MSR based techniques

Software repositories, such as source code and version
tracking systems, contain important historical information of
how a system was developed and maintained. Researchers have
mined this information to help in bug assignment.

Matter et al. [20] introduce an IR and vocabulary based
approach. They recommend developers whose commit vocab-
ulary is most similar to the vocabulary of the bug reports
by comparing the term frequencies using IR technique. They
achieve a precision of 34%.

Kagdi et al. [16] use identifiers (e.g., class, methods) and
comments from the source code and create a corpus for every
source code file. The corpus indexed by LSI is then used to
compute the similarity with the bug descriptions to predict the
files related to the bug. They recommend developers based on
their activities with these files in the version repository. They
achieve an accuracy of 94% on a small test dataset of 18 bug
reports.

Shokripour et al. [22] use NLP to mine the nouns in commit
messages, comments in the source code, and previously fixed
bug reports. Files related to a new bug report are predicted
using a term weighting scheme. Developers are recommended
based on their expertise with the predicted files. They achieve
an accuracy of 48%.

In another work, Shokripour et al. [23] use the phrase
compositions i.e. a NLP technique from the comments of
the commits and the bug descriptions. They recommend the
developers that are most active on the files with the most
similar phrase compositions. They achieve an accuracy of
31%.

Linares et al. [19] use code authorship information, identi-
fiers and comments of the source code file. Similarity of the
corpus indexed by LSI is computed between the files and the
bug report description with the author of top N most similar
files being recommended. The best precision and recall they
achieve is 63% and 64% respectively.

D. Social Network Analysis

Developers often collaborate with each other in the bug
resolution process. Social network analysis originated from
sociology has attracted some researchers to model the bug
assignment problems using a network of developers as nodes
and their collaborations as edges.

Zhang et al. [31] combine social network analysis with
machine learning. Developers’ contribution score determined
by fixing, commenting, reporting bugs is added to the classifier
score to recommend the developers. They achieve an accuracy
of 43%.

Hu et al. [12] propose BugFixer which computes the simi-
larity with other bug reports and recommends the developers
by constructing a network with the associations among the
developers, components, and bugs. They achieve a recall of
42%.

Zhang et al. [29] use IR techniques to find the similar bugs
and recommend the developers based on fixing probability de-
termined by the social network technique and fixing experience
computed by the number of bug reports fixed and assigned by
the developer. They achieve an F score of 25%.

E. Activity Models

In recent years, researchers have focused on specialized
techniques that model developer’s expertise by their activities
including fixing, commenting and reporting the bugs.

Tamarawi et al. [24] develop a fuzzy set and cache based
tool called Bugzie which maintains a fuzzy set of developers
for every technical term. It predicts the developers by mod-
elling the fixing correlation of developers with the technical
terms based on their fixing activities in the past. It recommends
the developers who recently participated in bug resolution (i.e.
the developers in the cache). They achieve an accuracy of
51.2%.

Wang et al. [25] introduce FixerCache which caches devel-
opers based on their bug fixing activity at component level for
a certain period and recommends the fixers by their activeness
score in the cache. They achieve an accuracy of 54.32%.

Zhang et al. [30] propose an approach that combines topic
models and the relationship between the bug reporter and the
fixer. They recommend the developers based on the correlation
score of a developer with a topic and an active reporter. They
achieve an F Score of 71%.

Naguib et al. [21] propose an approach leveraging topic
modelling and the developers’ activities, including review, fix-
ing and assigning bug reports. They recommend the developers
based on the association scores towards the topics of the bug
reports determined by these activities. The best accuracy they
achieve is approximately 30%.

Yang et al. [28] propose a new method by introducing topic
model and multiple feature including product, component,
severity, priority. They extract the set of candidate developers
who have contributed to the bug reports having same topic and
the features and rank them by the scores determined using their
number of activities e.g., commits, comments, bug assignment.
They achieve an accuracy of 63%.

Xia et al. [27] extend the basic topic modelling algorithm
LDA and propose multi feature LDA that includes product and
components. They recommend the developers based on the
affinity scores of a developer towards a topic and the feature
combination. They achieve an accuracy of 68%.



III. CASE STUDY DATA AND METHODOLOGY

Ericsson develops and maintains large and critical software
projects. Figure 1 shows where bug reports originate from:
internal testing including integration, validation and perfor-
mance testing and the customers. After code is committed,
it runs through multiple levels of testing from low level unit
tests run by developers to expensive simulations of real world
scenarios on hardware. When a test fails, testers investigate
whether it is an environmental problem or a product fault. If it
is determined to be a product fault, a bug report is created and
triaged. Ericsson customers are large telecom providers and in
this work, there are bug reports from over 300 customers. At
Ericsson, the triage process is done at the team level instead
of individual developers.

We collect all the bug reports with status FIXED and
reported between July 2016 to the end of June 2018. We keep
the duplicate bug reports in our dataset as previous work [6]
has shown that duplicate bug reports are useful. Our dataset
contains 11,570 bug reports, fixed by 43 teams, across 9
products. There are 301 customers reporting the bugs. 51%
of bug reports contain alarm logs and 5.5% of bug reports
contain crash dumps. Figure 2 shows the number of bugs fixed
by each development team. The data set is quite skewed with
81% of the reports being fixed by 8 teams.

Fig. 1. Bug report process

Fig. 2. Distribution of bug reports across the 43 teams

The data attributes we extract from the bug reports are sum-
marized in Table II. The attributes are of three types - Textual
Attributes e.g., summary, description and answer Categorical
Attributes e.g., product, customer, site, submitter, priority,
configuration and generation of product Log Attributes e.g.,
alarms and crash dumps

TABLE II
BUG REPORT FEATURES USED IN THE MODELS

Type Feature Description
Text Summary A short description of the issue
Text Description Detailed description of the issue. e.g.,

Configuration of the hardware, steps to
reproduce the issue etc.

Text Answer Description of the final solution made to
fix the issue

Categorical Product Product that the issue was found on
Categorical Customer Customer that uses the product the issue

was found on
Categorical Site Location the issue was reported from

e.g., Ottawa-Canada, Kista-Sweden
Categorical Submitter Team that reported the issue
Categorical Priority Priority of the issue. e.g., Major,

Medium, Minor
Categorical Configuration Higher level category of the product.

e.g., Baseband, Radio Software etc.
Categorical Generation Generation of the product. e.g., Gen1,

Gen2 etc.
Log Alarms Software and hardware errors or warn-

ings that can be potential threat for the
system

Log Crash Errors Errors generated by a program or pro-
cessor crash

A. Textual Attributes
We extract the textual data from the summary, description,

and answer of the bug reports. The answer is written by the
developer at the time of closing the bug report, so we use this
field in training data set only, not in the validation data set.

Preprocessing: We apply the standard preprocessing steps
on the textual contents including tokenization, stop words
removal, and stemming. Tokenization splits the text into mul-
tiple tokens. By applying stemming, the words are converted
into their root forms. Stop words are the frequently used
insignificant words which are removed. The terms which are
very rare and appear in very few documents are also removed.

Feature Extraction: In most of the works focusing on
prediction of bug report assignee using machine learning,
conventional TF-IDF term weighting scheme has been used
to vectorize the texts [11] [14] [3]. After preprocessing we
apply normalized TF-IDF to the text contents.

Definition 1. TF − IDFti,bj = tftibj ×

(
1+ log

(
1+B

1+b(ti)

))
B denotes the total number of bug reports, tftibj is the

number of occurrences of term ti in bug report bj and b(ti)
is the number of bug reports in which term ti has occurred.

B. Categorical Attributes
Along with text attributes, categorical attributes of the bug

reports play a very important role in bug triaging. Categorical



features have been widely used in the context of bug report
assignee recommendation [18] [5] [14] [11]. We use the
following categorical features: 1. Product 2. Customer 3. Site
4. Priority 5. Submitter 6. Configuration 7. Generation of the
product.

Feature Extraction: Using one hot encoding we convert
the categorical features into a binary feature vector to train the
classifier. In one hot encoding, a categorical attribute of every
data sample containing a particular value is represented by a
binary vector. The length of the binary vector is the number
of all possible values of a categorical attribute. The binary
vector of a data sample contains only one in the position of the
value that the data sample holds for the particular categorical
attribute and zeros in the position of the remained of the values
of the categorical attribute.

C. Alarms

Alarms are software and hardware errors and warnings that
can be a potential threat for the system. At Ericsson they use
a log processing tool to extract the alarms occurred on the
digital and radio units. The alarms listed in the dump are used
by the testers to identify the most pertinent part of the potential
problems.

Processing: Using the internal log processing tool, we
extract the alarms. We also extract the crash date if there is
any program crash. The machine dumps may contain logs of
several days if the nodes are not cleared. We look for the
alarms occurring on the day of crash. If there is no crash, we
look for the alarms occurred on the last date in the log. For a
specific problem there can be multiple causes. We concatenate
the text of the problem and cause together to make it a
single line. Then we select unique lines of problem and cause,
removing the duplicate ones. Figure 3 illustrates this process.

Feature Extraction: Instead of applying TF-IDF at term
level, we apply it at line level. As we select only the unique
lines, line frequency in this case is either 0 or 1. That is why
it is referred by Line-IDF [2].

D. Crash Dumps

Within the machine dump there is a postmortem log which
is generated when there is a program or processor crash. These
logs contain traces and errors with the timestamp and source
code file name, the trace or error is generated from and the
trace or error message. The file names and error messages
have the potential to be a good feature for bug triaging as
the development teams may have some affinity towards a
particular type of source code or error messages.

Processing: Using an internal Ericsson tool, we process
the postmortem logs and extract the file names and the error
messages of the crash errors. First we clean the error messages
by removing hexadecimal codes and all the non alphabetic
characters and ensure that each error message is unique.
Figure4 illustrates this process.

Feature Extraction: Error messages contain multiple terms.
Instead of using the terms as the unit of analysis, we apply
the weighting scheme Line-IDF [2] at the line level. However

for the source code file, TF-IDF is applied at term level as
unlike error message they contain a single term.

Definition 2. LINE − IDFl =

(
1 + log

(
1+A
1+Al

))
A denotes the total number of logs. Al denotes the number

of logs that contain the log line l.

Fig. 3. Cleaning alarm logs

Fig. 4. Cleaning crash dumps

E. Classification With Logistic Regression Models

We use L2-regularized Logistic Regression with Liblinear
solver [10] for classification. Logistic regression outperforms
NaiveBayes, SVM, and KNN (see Section VII). For the
best performing model, we vary the cutoff confidence score
and analyze it’s impact on the bug triaging accuracy. The
classifier determines the probability for every class. Like a
linear classifier, Logistic Regression Classifier multiplies the
class specific weights (Wy) with the input features (X) and
adds a bias (b) to calculate the class specific linear score (Sy).
The linear score is then used to calculate the probability of
the data sample belonging to each class. The class with the
highest probability score is selected as the class decided by
the classifier. We refer to the probability of the decided class
by confidence.

Suppose there are k classes denoted by j = 1 to k. Sy is the
linear score for the class Y and P (Y |X) is the probability of
the class Y.

Sy(X) = W t
yX + b

P (Y |X) =
exp(W t

yX + b)∑k
j=1 exp(W

t
jX + b)

We tune the regularization parameter, C, of the logistic
regression classifier. This parameter controls the overfitting.



The default value of C for the logistic regression classifier of
scikit-learn library is 1.0. We ran the model varying C = 1.0
to C = 10.0 and find that after C = 5.0, the precision and
recall vary by less than 0.30 percentage points. As a result,
we report the values at C = 5.0. We report the class weighted
average for precision and recall.

F. Evaluation Setup

To evaluate how well each attribute in the data helps
in triaging bugs, we use a time split evaluation with an
incremental learning framework that is common in the research
literature [7] [25] [27]. We collect the bug reports of two years
and sort them in chronological order. We split the dataset on
a weekly basis W . We train on W = 1 to W = T − 1 and test
on week T . Figure 5 illustrates our evaluation setup. We have
experimented with alternative time frames, e.g., months, and
removing older data. We find that the difference in precision
and recall is nominal with a decrease of .88 and .27 in
precision and recall respectively (see Section VII). We create
models to test each of our features independently as well as
in the context of a model that combines multiple features. In
total, we describe 8 models.

Fig. 5. Incremental evaluation setup

IV. REPLICATION RESULTS

RQ1: How well do existing bug triaging approaches,
which contain textual and categorical features, work at
Ericsson?

The simplest bug triaging approach uses a classification
model with the textual descriptions contained in the bug re-
ports worked on by each team or developer [3] [11]. Inclusion
of categorical attributes such as the products, components
is also an obvious method to triage bugs [18] [5]. For this
research question, we implement existing traditional model to
determine how well they work on Ericsson bug reports.

Model M1: Bug-Triaging model with only text: This
simple model uses only text attributes of bug reports such as
the summary and description and answers. We apply standard
NLP preprocessing and use TF-IDF as the term weighting
scheme (see Section III-A). In Table III, the text only model
has a precision and recall of 62.49% and 64.13%, respectively.

Model M2: Bug-Triaging Model with only categorical
features: We implement another simple model using categor-
ical features including products, customers. In Table III, we see

TABLE III
MODEL FEATURES AND PRECISION AND RECALL

Model Features Precision Recall
M1 Text 62.49 64.13
M2 Categorical 73.70 74.00
M3 Text & Categorical 78.09 79.00
M4 Text, Categorical, Alarms & Crashes 77.96 78.85
M5 Alarms 15.57 22.04
M6 Crashes 11.52 22.21

the model with categorical features outperforms the text model
with a precision and recall of 73.70% and 74% respectively.

Model M3: Bug-Triaging Model with Text and Categor-
ical: Combining the categorical and text features, we observe
a precision and recall of 78.09% and 79%, respectively. In
Table III, we see that this model outperforms M2 with an
increase in precision and recall of 4.39 and 5 percentage points
respectively.

Model 3, which has both textual and categorical at-
tributes, performs triaging of bug reports with a preci-
sion and recall of 78.09% and 79%, respectively. Cat-
egorical features have the strongest predictive power.

V. RESULTS FOR ALARMS AND CRASH DUMPS

RQ2: Does the information contained in alarm logs and
crash dumps help in bug triaging?

Bug reports often contain crash dumps and other log
information. We make a novel contribution by determining
how well this data helps in bug triaging. We use the internal
Ericsson tools to extract alarm and crash details from the logs.
The extracted information is textual and is processed using
Line-IDF as described in Section III-D. This information is
more difficult to extract than textual and categorical attributes
of the bug reports. So, we create a combined model to
determine how much additional predictive power this alarm
and crash information add to existing models.

Model M4: Bug-Triaging Model with Text, Categorical,
Alarms, and Crash features: This model includes all the
attributes that we collect from the bug reports: text, cate-
gorical, alarms, and crash dumps. In Table III, we see that
this model achieves a precision and recall of 77.96% and
78.85% respectively. Surprisingly this additional information
does not improve the accuracy of bug triaging. Although text
and categorical information are sufficient, for completeness,
we create individual models for alarms and crash dumps to
determine their independent ability to triage bugs.

Model M5: Bug-Triaging Model with only alarms: This
model is trained with the alarms contained in logs. The
alarm contains both problem and cause, so we use Line-
IDF to capture the entire alarm text. In Table III, the alarm
model achieves a precision and recall of 15.57% and 22.04%
respectively. Across all bug reports, alarms are a poor feature
for bug triaging.



Model M6: Bug-Triaging Model with only crash dumps:
The model is trained with the crash error messages and the
source code file names extracted from the crash dumps. We
use Line-IDF for the crash error messages. In Table III, we
see that this model achieves a precision and recall of 11.52%
and 22.21% respectively. We observe that only 5.52% bug
reports contain the crash dumps. The scarcity of bug reports
with attached crash dumps and the low predictive power make
crash dumps a poor feature for bug triaging.

Model M7 and M8: Bug reports that contain alarms:
Half of the bug reports, 51.17%, contain alarms. We train two
models on the bug reports that contain alarm logs. First we use
the text and categorical features from our best model, M3, but
train and test Model M7 only on the bug reports that contain
alarms logs. In Table IV, we see that this model achieves a
precision and recall of 70.72% and 72.80% respectively.

Then we create Model M8 that adds alarms to M7 to
determine if these alarms improve the precision and recall on
bug reports that contain alarms. In Table IV, we see model M8
achieves precision and recall of 70.09% and 72.28%. We see a
slight reduction in precision and recall with M8 and conclude,
that at Ericsson, the alarms do not provide information that
improves the accuracy of bug triaging.

Performing same experiments as model M7 and M8 with
crashes have not been possible due to scarcity of bug reports
containing crash dumps.

TABLE IV
MODELS OF BUG REPORTS CONTAINING ALARM LOGS

Model Features Precision Recall
M7 Text & Categorical 70.72 72.80
M8 Text, Categorical & Alarms 70.09 72.28

Alarm logs and crash dumps are available for only
51.17% and 5.52% of all bug reports. Even when we
train the models with the subset of bug reports that
contain the alarms, there is no improvement in the
precision and recall when compared with the model
that contains only the textual and categorical features.

VI. RESULTS FOR HIGH CONFIDENCE PREDICTIONS

RQ3: What is the impact of high confidence prediction
on the accuracy of triaging?

The distribution of bug reports that each team fixes is highly
skewed, with a small number of teams fixing most of the
bugs, see Figure 2. At Ericsson, developers suggested a novel
approach by triaging only those bug reports for which the
confidence in the prediction is high.

Top N Recommendation: As the problem of bug triaging
deals with a large number of developers or teams, researchers
are often interested to evaluate the performance of the models
with top N recommendation [27] [28] [25]. In this section
we report the accuracy of our model in order to be able to

make comparisons with the results of other works done in
this context.

We use best performing model M3, to evaluate the model’s
performance of recommending N teams. We select the top N
development teams predicted by model M3 and consider a hit
in accuracy if the actual team that fixed the bug is in the list
of top N. In Table V we see that the model achieves 86.63%
and 90.02% accuracy for recommendation of top 2 and top 3
development teams respectively. The percentage point increase
in accuracy for top 2 and 3 recommendation are 7.63% and
11.02% respectively from top 1 recommendation.

TABLE V
ACCURACY OF TOPN RECOMMENDATIONS

TopN Accuracy
Top1 79.00
Top2 86.63
Top3 90.02

We have 43 development teams to assign the bug reports
to and achieve top1 accuracy of 79%, while other researchers
tend to focus on the core developers with between 25 and
1000 developers. The previous works that have a hundreds
of developers and evaluate using time split validation like us,
tend to have low top 1 accuracy, for example 68% with 405
developers [27], 54% with 238 developers [25] and 43% with
77 developers. Our accuracy is also comparable with existing
works that have a similar number of developers for example
77% with 76 developers and evaluated on a fixed test data
[11], 28.60% with 11 developers [12].

For top 1 to top 3 recommendation, the accuracy is
79.00%, 86.63%, and 90.02% respectively.

High Confidence Bug Triaging: With TopN predictions, a
developer still needs to manually assess the triage recommen-
dation and assign it to a particular team or developer. Ericsson
wants automated bug triaging and decided to automatically
triage only those bug reports that the model had high con-
fidence in the prediction (refer to III-E). Since the data is
skewed with some teams fixing many bugs, the confidence
that the model has in each prediction varies. There is a trade-
off between accuracy and the number of predictions. We set a
cutoff for the confidence score and we remove the predictions
with confidence lesser than the cutoff. In Figure 6, we plot
the percentage of predictions and accuracy with varying cutoff
confidence scores. The percentage of predictions and accuracy
are calculated using the subset of bug reports predicted with
confidence higher or equal to the cutoff. The lines of prediction
and accuracy intersect at confidence score around 0.6.

Table VI and Figure 6 show the impact of only triaging
bug reports predicted with a confidence between 10% to
90%. When we set the confidence cutoff to 10%, we have
an accuracy of 79.00% and triage 100% of the bug reports.
When the cutoff confidence is 60%, We see that 83.76% of the
reports are triaged with an accuracy of 85.73%. When we set



the confidence cutoff to 90%, We have an accuracy of 90.17%
but the model can only triage 61.71% of the bug reports.

Since a TopN prediction will result in manual effort, Er-
icsson’s preference is to automatically triage only those bug
reports predicted with high confidence as that produces better
accuracy.

We find that when the model is 90% confident in the
result, we are able to triage bug reports with a precision
and recall of 89.75% and 90.17%, respectively. How-
ever, we only triage 61.71% of the total bug reports.

TABLE VI
TRIAGING BUGS WITH ABOVE A CONFIDENCE LEVEL CUTOFF. WITH A
HIGHER CUTOFF, FEWER BUGS ARE TRIAGED, BUT THE ACCURACY OF

THE PREDICTION IMPROVES.

Confidence Level Triaged Bugs Accuracy Precision Recall
≥ 0.1 100% 79.00 78.09 79.00
≥ 0.3 97.8% 80.19 79.36 80.19
≥ 0.5 89.18% 83.77 82.80 83.77
≥ 0.6 83.76% 85.73 84.59 85.73
≥ 0.7 78.56% 87.3 86.25 87.3
≥ 0.9 61.71% 90.17 89.73 90.17

Fig. 6. The number of bugs triaged vs the prediction accuracy while varying
the cutoff on confidence of the predictions

VII. DISCUSSION OF THREATS TO VALIDITY

We examine bug reports of 9 large products at Ericsson.
These results clearly do not generalize outside of Ericsson,
however, our results are in line with previous works that
examine a wide range of open source and other projects. We
also examine the impact of the period used for training and
the type of model.

A. Training Time Period

In the paper, we use weekly intervals to incrementally train
and test the model. We train using all existing data prior to

the current week of test data. Research has noted that using
old data during training can reduce precision and recall [14],
[27]. To address this threat, we run the best performing model
M3 with the training dataset limited to two and six months
respectively. At two months, we see a precision and recall
of 73.67% and 75.66%. The corresponding values for six
months are 77.21% and 78.73% respectively. Results of two
months are quite less than using the entire training set, while
experiment with six months decreases the precision and recall
by less than 1 percentage point. The time period used in
training is easily tuned to a company’s needs.

Removing old bug reports from training data does not
improve accuracy of bug triaging at Ericsson.

TABLE VII
RESULTS WITH LIMITED TRAINING DATA

Model Features Time Period Precision Recall
M3 Text & Categorical 2 months 73.67 75.66
M3 Text & Categorical 6 months 77.21 78.73
M3 Text & Categorical All preceding data 78.09 79.00

B. Alternative Classifiers

In this paper, we find that a logistic regression is the simplest
model and has the highest precision and recall. We trained
other classifiers: Naive Bayes, Linear SVM, and KNN. In
Table VIII, we report the precision and recall for each classifier
using the textual and categorical features of the bug reports.
Naive Bayes and KNN perform poorly. While Linear SVM
decreases precision and recall by only 1 percentage point than
logistic regression, it requires substantially more time to train
the models. We have tuned the hyper-parameters of Linear
SVM and KNN. For Linear SVM we vary the regularization
parameter C from 1.0 to 10.0 and get the best result at C
= 2.5. For KNN, We vary the number of neighbors N up to
50. Future work could examine other models including neural
networks and ensemble classifiers.

A logistic regression classifier outperforms more so-
phisticated classifiers including linear SVM.

TABLE VIII
RESULTS FOR ALTERNATIVE CLASSIFIERS

Classifier Precision Recall
Naive Bayes 64.62 64.84
KNN 57.96 60.64
Linear SVM 77.74 78.08
Logistic Regression (M3) 78.09 79.00

VIII. CONCLUSION AND CONTRIBUTIONS

Bugs are inevitable in any piece of software. Manually
triaging bug reports and assigning them to the right developer



or team is costly. Research into automating the bug triage
process is extensive. In this paper, we examine the use of
automated triaging across 9 products at Ericsson. We make
three contributions.

1) We reproduce the techniques commonly used by re-
searchers in an industrial setting. Reviewing the liter-
ature, we note that many works use cross validation or
relatively small data sets to evaluate their techniques
(see Table II). Cross validation is unrealistic because
future bug reports are used to assign developers to past
bug reports. We use a methodologically valid time split
evaluation where we sequentially train and test on a large
industrial data set. In our dataset, we find that older
data does not reduce the precision and recall, and that
6 months of data is sufficient to preform triage.

2) Our models contain the simple textual and categorical
features of bug reports as well as alarms and crash
dumps. The text and categorical features outperform the
more complex error information, with a precision and
recall of 78% and 79% respectively. However, in our
dataset only a small proportion of bug reports contain
crash dumps and just over half contain alarms.

3) Although our models have a comparable accuracy to
other large scale bug triaging research works, they were
not sufficient for regular use at Ericsson. We can increase
our accuracy to 90% when we suggest the top 3 teams,
but this still requires manual triage effort to decide
among the top 3. Instead, we only triage the bug reports
when the model has high confidence in the prediction.
Using this approach we are able to attain an accuracy
of 90% on 62% of the bug reports. The manual effort
is reduced by over half and high accuracy is achieved
with the automatically triaged bug reports.

Automated bug triage work continues at Ericsson. The
introduction of high confidence bug triaging shows promise.
Furthermore, while alarms and crash logs do not improve the
accuracy of triage, an effort is beginning for better storage
and cleaning of crash dumps to provide a larger training set.
There is hope that the tedium of triaging will become more
automated in industry.

REFERENCES

[1] S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic software bug
triage system (bts) based on latent semantic indexing and support
vector machine. In 2009 Fourth International Conference on Software
Engineering Advances, pages 216–221. IEEE, 2009.

[2] A. Amar and P. Rigby. Mining historical test logs to predict bugs and
localize faults in the test logs. In Proceedings of the 41st International
Conference on Software Engineering. ACM, 2019.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

[4] J. Anvik and G. C. Murphy. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM Transactions
on Software Engineering and Methodology (TOSEM), 20(3):10, 2011.

[5] S. Banitaan and M. Alenezi. Tram: An approach for assigning bug
reports using their metadata. In 2013 Third International Conference on
Communications and Information Technology (ICCIT), pages 215–219.
IEEE, 2013.

[6] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmfulâĂę really? In 2008 IEEE International
Conference on Software Maintenance, pages 337–345. IEEE, 2008.

[7] P. Bhattacharya, I. Neamtiu, and C. R. Shelton. Automated, highly-
accurate, bug assignment using machine learning and tossing graphs.
Journal of Systems and Software, 85(10):2275–2292, 2012.

[8] G. Canfora and L. Cerulo. Supporting change request assignment in
open source development. In Proceedings of the 2006 ACM symposium
on Applied computing, pages 1767–1772. ACM, 2006.

[9] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu,
Y. Dang, and D. Zhang. An empirical investigation of incident triage
for online service systems. In Proceedings of the 41st International
Conference on Software Engineering. ACM, 2019.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
Liblinear: A library for large linear classification. Journal of machine
learning research, 9(Aug):1871–1874, 2008.

[11] A.-C. Florea, J. Anvik, and R. Andonie. Spark-based cluster implemen-
tation of a bug report assignment recommender system. In International
Conference on Artificial Intelligence and Soft Computing, pages 31–42.
Springer, 2017.

[12] H. Hu, H. Zhang, J. Xuan, and W. Sun. Effective bug triage based
on historical bug-fix information. In 2014 IEEE 25th International
Symposium on Software Reliability Engineering, pages 122–132. IEEE,
2014.

[13] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with
bug tossing graphs. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 111–120.
ACM, 2009.

[14] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson.
Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts. Empirical Software Engineering, 21(4):1533–
1578, 2016.

[15] L. Jonsson, D. Broman, M. Magnusson, K. Sandahl, M. Villani, and
S. Eldh. Automatic localization of bugs to faulty components in large
scale software systems using bayesian classification. In 2016 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), pages 423–430. IEEE, 2016.

[16] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad. Assigning
change requests to software developers. Journal of Software: Evolution
and Process, 24(1):3–33, 2012.

[17] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong. Applying
deep learning based automatic bug triager to industrial projects. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 926–931. ACM, 2017.

[18] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. An empirical study on bug
assignment automation using chinese bug data. In 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages
451–455. IEEE, 2009.

[19] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk. Triaging incoming change requests: Bug or commit
history, or code authorship? In 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pages 451–460. IEEE, 2012.

[20] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports using
a vocabulary-based expertise model of developers. In 2009 6th IEEE
international working conference on mining software repositories, pages
131–140. IEEE, 2009.

[21] H. Naguib, N. Narayan, B. Brügge, and D. Helal. Bug report assignee
recommendation using activity profiles. In Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 22–30.
IEEE Press, 2013.

[22] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation. In 2013 10th Working Conference
on Mining Software Repositories (MSR), pages 2–11. IEEE, 2013.

[23] R. Shokripour, Z. M. Kasirun, S. Zamani, and J. Anvik. Automatic
bug assignment using information extraction methods. In 2012 Inter-
national Conference on Advanced Computer Science Applications and
Technologies (ACSAT), pages 144–149. IEEE, 2012.

[24] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Fuzzy
set and cache-based approach for bug triaging. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 365–375. ACM, 2011.



[25] S. Wang, W. Zhang, and Q. Wang. Fixercache: Unsupervised caching
active developers for diverse bug triage. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, page 25. ACM, 2014.

[26] W. Wu, W. Zhang, Y. Yang, and Q. Wang. Drex: Developer recom-
mendation with k-nearest-neighbor search and expertise ranking. In
2011 18th Asia-Pacific Software Engineering Conference, pages 389–
396. IEEE, 2011.

[27] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang.
Improving automated bug triaging with specialized topic model. IEEE
Transactions on Software Engineering, 43(3):272–297, 2017.

[28] G. Yang, T. Zhang, and B. Lee. Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug

reports. In 2014 IEEE 38th Annual Computer Software and Applications
Conference, pages 97–106. IEEE, 2014.

[29] T. Zhang and B. Lee. A hybrid bug triage algorithm for developer
recommendation. In Proceedings of the 28th annual ACM symposium
on applied computing, pages 1088–1094. ACM, 2013.

[30] T. Zhang, G. Yang, B. Lee, and E. K. Lua. A novel developer ranking
algorithm for automatic bug triage using topic model and developer
relations. In 2014 21st Asia-Pacific Software Engineering Conference,
volume 1, pages 223–230. IEEE, 2014.

[31] W. Zhang, S. Wang, Y. Yang, and Q. Wang. Heterogeneous network
analysis of developer contribution in bug repositories. In 2013 Inter-
national Conference on Cloud and Service Computing, pages 98–105.
IEEE, 2013.


