Statistical Translation of English Texts to
API Code Templates

Anh Tuan Nguyen, Peter C. Rigby,! Thanh Nguyen,® Dharani Palanif, Mark Karanfil?, Tien N. Nguyen®
Axon US Corp.t
Concordia University, Montreal, Canadat
Towa State University®
University of Texas, Dallas®
Email: ntanhbk44 @ gmail.com, peter.rigby @concordia.ca, thanhng @iastate.edu,
dharani.kumar @ gmail.com, m.karanf@gmail.com, tien.n.nguyen@utdallas.edu

Abstract—We develop T2API, a context-sensitive, graph-based
statistical translation approach that takes as input an English
description of a programming task and synthesizes the cor-
responding API code template for the task. We train T2API1
to statistically learn the alignments between English and API
elements and determine the relevant API elements. The training
is done on StackOverflow, a bilingual corpus on which developers
discuss programming problems in two types of language: English
and programming language. T2API considers both the context
of the words in the input query and the context of API elements
that often go together in the corpus. The derived API elements
with their relevance scores are assembled into an API usage
by GRASYN, a novel graph-based API synthesis algorithm that
generates a graph representing an API usage from a large code
corpus. Importantly, it is capable of generating new API usages
from previously seen sub-usages. We curate a test benchmark
of 250 real-world StackOverflow posts. Across the benchmark,
T2API’s synthesized snippets have the correct API elements with
a median top-1 precision and recall of 67% and 100%, respec-
tively. Four professional developers and five graduate students
judged that 77% of our top synthesized API code templates are
useful to solve the problem presented in the StackOverflow posts.

I. INTRODUCTION

Developers use the functionality of libraries via Application
Programming Interfaces (APIs). Software libraries can be used
in different ways, but not all of them are well documented
in the official documentation and programming guides [1].
Researchers have focused on supporting the discovery of
knowledge of API usages [2], including suggesting existing
code snippets based on English queries [3]], [4], [S], [6], [71,
or synthesizing common API code usages [8], [9], [1O].

To suggest API code from a query, earlier works use
information retrieval (IR) [4], [5], [6], [7] with their goal
being centered on API code search [2]. Recently, going
beyond searching for existing code, researchers have aimed to
generate new API code, by exploring statistical approaches
including machine translation [9], probabilistic CFG [10],
domain specific translation [[11], and deep neural network [3]].
Compared to these previous IR methods, statistical approaches
can synthesize new code.

We continue this work by viewing the problem of generating
API usages as a translation problem. We develop a graph-
based statistical machine translation (SMT) model, named
T2API, to translate from English input text into an output
code graph and template. To illustrate the key concepts of

our approach, we start with the simplified example below and
expand it to include code graphs in Fig. [I] The architecture
of T2API involves three stages: mapping, expansion, and
ordering. We illustrate the stages by translating the English
input “Send messages over the Internet” into code. After
removing stopwords, one possible translation is as follows:

send messages Internet

Mapping

Message.send() Message.compose() Socket.open()

Expansion Message.send() Message.compose() Socket.open() Socket.close()

I

Ordering Socket.open() Message.compose() Message.send() Socket.close()

Statistical machine translation relies on finding the most
probable mappings between the input and output languages,
such as the term “messages” mapping to the code el-
ement Message.compose(). Some probable terms may be
missing, therefore, the model requires term expansion,
e.g.,Socket.close() is added. The words’ order in the languages
may be quite different, thus, it requires an ordering stage, such
as composing a message before sending it.

In the mapping stage, we need a mapping model which
is trained on a bilingual corpus or a set of aligned texts.
An example corpus for natural languages are the Canadian
parliamentary proceedings which are in both English and
French. In the context of code, we adapt StackOverflow
posts, which then serve as a bilingual corpus that discusses
programming tasks in both English and in code. To perform the
translation, we also need a language model for code, which
we could extract from a large corpus of source code in the
open-source projects in GitHub. We can combine the mapping
model and code language model to perform the translation
using a noisy-channel model and Bayes rule. We find the most
probable output code, ¢ according to the following:

argmax P (C|E) = argmaxp (C) x p (E|C)
ceC ceC
where p (E|C) is calculated from the bilingual StackOverflow
corpus as the number of posts that an English word, F, and a
code element, C, co-occur in. p (C) is calculated by the code
language model based on the occurrence frequencies of the

code elements in the GitHub corpus. This simple model is at
the heart of statistical machine translation and in our example
suggests a useful but incorrectly ordered set of code elements.

Natural languages tend to have similar word ordering (e.g.,
left to right). Even in a translation from English to German
one may only need to switch the order of the noun and verb.
Mistakes in word order can lead to rough translations that
require the reader to perform reordering manually. In stark
contrast, code must compile and the unlike English and Ger-
man does not always work sequentially from left to right. For
these reasons, unlike previous works, we do not use a sequence
of tokens to represent code [9]], [L1]], [10], [3]]. Instead, we
develop two new techniques to address that challenge. First,
we develop an algorithm, called context expansion, for the
mapping stage, that prioritizes the order of translation for each
English word in the query by considering the contexts of the
surrounding words and the already-translated code elements
in the result. Second, we design GRASYN, a graph synthesis
algorithm that synthesizes the graphs representing API usages.
We use Gralan graphs [12] as the underlying representation,
which are more suitable to source code than the n-grams, i.e.,
sequences of tokens used by other translation approaches. We
extract a large number of graphs from the GitHub corpus and
learn from these graphs to order the translated code elements
into the most likely API usage graph with control units, and
data and control dependencies among API elements. Our code
ordering stage requires the stepwise synthesis and combination
of likely subgraphs based on the API elements we obtained
from the mapping stage. We use a beam search on graph
synthesis, which is more challenging than on n-grams, to limit
the set of likely graphs in each synthesis iteration, making
T2API efficient. The output of T2API is an API graph and an
API template. In brief, we make the following contributions:

1) We treat StackOverflow as a bilingual corpus describing
programming tasks in English and code. We perform
substantial automated cleaning on over 236k StackOver-
flow posts. The alignments between code and English on
StackOverflow describe a wide range of tasks allowing
us to make high-quality translations.

2) We adapt the simple IBM 1 lexical translation approach
to a software engineering context by introducing a novel
code element expansion stage. This stage is based on the
co-occurrence frequency of code elements in StackOver-
flow posts. This expansion stage is optional and increases
the precision and recall of our approach by as many as
20 percentage points.

3) Our underlying representation is a graph, which is more
suitable for API usages than the sequence of API el-
ements used in previous work [9], [3]. 85% of the
synthesized graphs do not exist as a whole in the training
data, thus, they cannot be found by code search.

4) Our first evaluation involves a manually curated bench-
mark consisting of 250 unseen, randomly sampled Stack-
Overflow posts which we make publicly available. These
posts contain substantially more and longer inputs and
complex translated outputs than those from the state-of-
the-art approaches. Our best approach attains a median
precision of 67% and recall of 100%.

network messages
Step 1
Mapping from
words to code File.send() Socket.open() Message.compose()
elements Message.send() Socket.close() Message.send()
(C))
Step 2 —| Socket.open() | | FM |
3) (6)

Placing code
elements into
usage graph

) API usage template

Message.compose()
@
Message.send()

®)

Socket.close()

Fig. 1: Example of API Usage Graph Generation in T2API

Socket.open()
while (...)
Message.compose()

Message.send()

Socket.close()

5) In our second evaluation of T2API, we had four pro-
fessional developers and five graduate students judge the
usefulness of our synthesized code snippets with respect
to the purpose of the StackOverflow posts. 77% of the
translated code templates were deemed to be useful.

6) T2API is available as an online web-based tool, allowing
users to type in an English query and receive a usable
code template and view the code graph.

II. ILLUSTRATING EXAMPLE

T2API is designed with the principle of statistical machine

translation [13], [[14]. Since programs are viewed as graphs,
we develop GRASYN, a novel graph synthesis approach within
T2API, to place the API elements generated via a context
expansion process into the most natural API usage graph
that is relevant to the query. Fig. [I] illustrates T2API via an
example. Assume that a user want to have an API template for
sending message over Internet. (S)he types the query “Send
network messages”. T2 API processes it in two steps:
(1) Mapping from words to API elements and Contextual
Expansion: We use maximum likelihood IBM Model [15]]
to derive the m-to-n mappings for the pairs of words and
API elements with their likelihoods. Contextual expansion is
proceeded as follows:

« Initially, T2API selects a pair of central words and API
element as a starting point for expansion. The central API
element needs to be highly relevant to the input. Thus,
we choose the API element having highest total mapping
score with all the words (measured by the IBM Model).
For example, Message.send is the central API since it has
the highest mapping scores to “send” and “messages”.
Then, the word “messages” becomes our central word.

o T2API then starts expanding by considering the words in
the input in a prioritized order, e.g., “messages”, “send”,
“network”, with respect to the co-occurrences with the
central word. It maps each word to k elements. The
result is a collection of mapped API elements considering

T2API SYNTHESIZER

English Input
|

Word Translation

PRE-PROCESSING & TRAINING

StackOverflow Posts

Mapping Model

—* Create Parallel Corpus (IBM Model) (Mapping)
‘ Contextual
4.{ Extract Code %—‘ API Associations | Expansion
(Expansion)

I

Graph Synthesis
(Ordering)

\
|

Usage Graph
Output

Language
Model (GraLan)

Git Repositories

Fig. 2: T2AP1 Architecture

the contexts. In Fig. after this step, we have Mes-
sage.compose, Message.send, File.send, Socket.open,
and Socket.close.
(2) Placing API elements into a usage graph via GRASYN:
This step corresponds to the addition, removal and re-ordering
of terms in the target language in a SMT [14]]. Since we use
graphs rather than sequences, we perform graph synthesis:

o T2API starts with the central API element Message.send
as the initial node of the graph synthesis process. It
then gradually adds other nodes (and inducing edges)
according to the occurrence likelihood of the new graph.
It also considers the addition of control units (e.g., for, if)
to make the graph complete. During this, there may be
disconnected graphs that could be later joined by adding
likely nodes. The final graph is connected. In Fig. [I] the
numbers show the order that the nodes are added.

e T2API stops after all the APIs produced via context
expansion are covered. Nodes considered redundant due
to low relevancy with other nodes (e.g.,File.send) are
removed. The output template is shown in Fig. [}

III. PRE-PROCESSING AND TRAINING OF
MAPPING AND LANGUAGE MODELS

We develop T2API, a graph-based machine translation
model with the general architecture shown in Fig. 2] This
section presents T2API’s pre-processing and training with two
key building blocks: the mapping and language models.

Create Parallel Corpus and Mapping Model. The goal
of the mapping model is to learn the mappings between
individual words and API elements. We make use of the IBM
Model [15] for this word-to-API mapping task. The principle
of IBM Model is to learn the mapping pairs via maximizing
the likelihoods of observing them over a large number of pairs
of English texts and corresponding sequences of APIs. For
example, in such a parallel corpus, a description “write to
a socket” corresponds to the code with the following API
elements Socket.new, Socket.write, and Socket.close.

ACE tool. To build such training pairs for IBM Model, we pro-
cessed a large number of StackOverflow (SO) posts using the

Question 9292954

Title: How to make a copy of a file in Android

In my app I want to save a copy of a certain file with a different
name (which I get from user) Do I really need to open the contents
of the file and write it to another? What is the best way to do so?
Answer: (Rating 132)

To copy a file and save it to your destination path you can use the
method below.

public void copy(File src, File dst) throws IOException {
FileInputStream in = new FilelnputStream(src);
FileOutputStream out = new FileOutputStream(dst);

1
2
3
4
5 // Transfer bytes from in to out
6 byte[] buf = new byte[1024];

7 while (in.read(buf) > 0) {

8 out.write(buf,0) ;

!
in.close()

9
10 ;
11 out.close();
12 }

Fig. 3: StackOverflow Question and Answer 9292954

ACE tool [16]. Fig. [3] shows the question and an answer for
the post #9292954. ACE can identify type and package infor-
mation from API elements in freeform texts and incomplete
code snippets. It extracts APIs embedded within texts. It
removes stopwords (a, the, etc.) from the posts and extracts
keywords/keyphrases (copy, file, save, etc.).

The training data for the IBM Model produced by Create
Parallel Corpus is the collection of pairs in which each pair
consists of a textual description (excluding the API elements
in the text and the code snippet) and the set of extracted API
elements from both places. Such exclusion is needed since we
aim to map the words and the code elements. Otherwise, the
embedded API elements will affect the mappings of the En-
glish words in the query. For the SO post above, the extracted
texts include “make copy file Android”, “app save copy file
different name”, “open contents file”, “write to file”, “save
destination path”, etc. The corresponding set of API elements
includes File, FilelnputStream.new, FileOutputStream.new, etc.
We also keep the control units, e.g., while, for, if, etc.

After training, the result includes m-to-n mappings
from individual words to individual API elements: [‘file’—File,
‘file’ — FilelnputStream.new, ‘save’ — FileOutputStream.write,
‘write’ — FileOutputStream.write, ‘contents’ — byte[].new,
‘close’ — FilelnputStream.close, ‘close’ — FileOutput-
Stream.close, etc.]. The mappings and scores are used to infer
the API elements during expansion.

Language Model. A language model estimates how likely
a sentence occurs in the target language. Since we perform
graph synthesis, we need a graph-based language model. We
use GrouMiner [17] to build API usage graph in which the
nodes represent API object instantiations, variables, API calls,
field accesses, and control units (e.g.,while, for, if). The edges
represent the control and data dependencies between the nodes.
Fig.] shows the usage graph for the code in Fig. 3] We
then use GraLan [12], a graph-based language model that can
compute the naturalness via the occurrence likelihood of any
API usage graph after we train it with a large corpus of GitHub
projects (from which usage graphs are built).

|FileAvar '——I FileInputStream.new '—:lFileInputStream.decl'—
WFiIeOUtP“tStream-“eWhI‘ Fi]eOutputStream.declI
byte[].new }

FileInputStream.read [<—

< WHILE

. |
—:ﬂ FileOutputStream.write I I
|

Legends

instantiations, variables,
API calls, field accesses,
variable declarations.

control unit

data dependencies
control dependencies

»I FileInputStream.close |<*

scope

—>| FileOutputStream.closeI

Fig. 4: API Usage Graph Representation

T2AP1 Synthesizer. We develop a graph synthesizer that uses
the trained mapping model and language model to synthesizes
new API usage graphs from a query in 3 steps: word transla-
tion, context expansion, and graph synthesis. Let us explain the
first two steps in Section [[V]|and graph synthesis in Section

IV. CONTEXTUAL EXPANSION ALGORITHM

After the IBM Model is trained, it gives us the word-to-API
mappings. We use the trained IBM Model to perform word
translation on the given query, i.e.,, for each word, it gives
a ranked list of mapped API elements. We use that result for
context expansion. The goal of the expansion step is to collect
the set of API elements that are most relevant for the query.
A naive solution is to collect the top-ranked API elements for
each word into the resulting set. That solution faces two key
challenges. First, a word can be used in different contexts with
other words describing different programming tasks, and it can
be mapped to multiple APIs. Thus, we cannot take advantage
of the already-translated words that might provide context for
expanding API elements from the current word. Second, the
relevant API elements are inter-dependent on one another. A
choice of mapping for an element could affect the mapping
for the next API element. If we simply pick the most frequent
element for a word, it may not fit with the current context of
both text and code. Thus, we develop a contextual expansion
algorithm to collect the set of relevant API elements S.

To account for the contexts, we rely on two principles. First,
to account for code context (dependency among selected API
elements), the next element must have the highest relative
co-occurrence frequency with all API elements that were
already selected. The co-occurrence frequencies of the API
elements in the posts are computed by the API association
module via ACE (Fig. 2). The idea is that if ¢ and ¢
(e.g.,FilelnputStream.new and FilelnputStream.close) often go
together, it indicates a usage relation. The chosen element must
be among the ones that are likely mapped to the current word.

Second, to consider the word context in the given query,
the next word ¢ to be translated must have the highest relative

1 function Expansion (7', C, IBM_Model M)

2 I ={c; € C that has highest total mapping score with ¢; € T}

3 J ={t € T that has highest total mapping score with ¢; € I}

4 return ExpandCodeElements(T', I, J)

5

6 function ExpandCodeElements(7T’, I, J)

7 while (T'\ J # 0)

8 Select ¢ € (T'\ J) with highest TextCooccurrenceScore(t,.J
9 Q={M@}
10 Order ms € Q descending by CodeCooccurrenceScore(m,/
11 I =1U {top k elements ms € @ with relev_scores from M}
12 J=Ju{t}
13 return I
14

15 function TextCooccurrenceScore(t, J)
CountPosts(j,t)

‘16 return HjEJ CountPosts(j) ‘

‘ 17

18 function CodeCooccurrenceScore(m, I)
CountPosts(i,m) ‘
|

Pg return HiEI CountPosts(i)

Fig. 5: API Element Expansion with code and word contexts

co-occurrence frequency with all the already-translated words.
Our intuition is that the co-occurrence of ¢ and ¢’ could be part
of a description of a certain task (e.g., “open” and “file”).
Algorithm. Fig. [5] shows the pseudo-code of our algorithm.
It takes the query 7', the set of top-ranked API elements C'
produced by running the trained IBM Model (mapping model)
on the words in T without considering contexts, the trained
IBM Model with word-to-API mappings, and returns the set
of API elements relevant to 7" and their scores.

First, we select the central element having highest total
mapping score with the words in the query 7' (line 2) since
that element is most likely relevant to the query. For example,
in the query “open file contents”, considering the elements
mapped with the word “file” and the elements for “open”
and “contents”, the central API element could be Fileln-
putStream.open or FileOutputStream.open. We then map the
central API element back to the query (using IBM Model) to
identify the central word ¢ (line 3). Next, the API elements that
are mapped to multiple words but do not fit the current context
will not be considered as relevant (function ExpandCodeEle-
ments). Specifically, during expansion, that function proceeds
in a stepwise manner expanding the set of API elements. We
consider the word context in T'. At a step, we select a word
t for translation such that £ must have highest relative co-
occurrence frequency with all of the already-translated words
in all SO posts (line 8, TextCooccurrenceScore). Relative co-
occurrence frequency is scored by the formula at line 16.

For code context, the next API element to be chosen must
have the highest relative co-occurrence frequency with all API
elements that were already collected (line 10 and function
CodeCooccurrenceScore). Such relative co-occurrence fre-
quency is scored by the formula at line 19. That next element
must be among the most likely mapped elements (i.e., highest
mapping scores) for ¢ according to IBM Model (line 11).

After the expansion, for each word in the query, we take
the top-k£ API elements (line 11). We are not interested in the
order of the elements as the order of the English words does
not map to a compilable order for code. The elements and their
relevance scores (to the query) computed by IBM Model are
used by the graph synthesizer to synthesize the usage graph.

V. GRASYN: USAGE GRAPH SYNTHESIZER

We develop a graph synthesizer that takes the API elements
and their relevance scores from the previous step, and puts
them together in an API usage graph relevant to the query.

Fig. [7] shows the pseudo-code for the GRASYN algorithm.
It takes as input the query 7', the set of API elements J with
their relevance scores, and the trained graph-based language
model GL. It produces a ranked list of candidate usage graphs.

At lines 2-5, we initialize the synthesis. First, we use the

central API element detected in the previous step as the starting
node in a single-node graph gy. The score of this single-node
graph is calculated as the product of the relevance score and
the occurrence probability of the node central in the graph
corpus. At lines 9—16, we extend each graph in the list of un-
explored graphs CG (line 9), which is initialized with the
single-node graph gy. Using a beam search, we pick the graph
g with the highest score first. We consider each node n in the
API nodes in J that have not been yet explored as a potential
expansion ordered by their relevance scores (lines 11-13). The
rationale is that the nodes with higher scores are more likely
related to the query. We attempt to extend the current graph g
with the current node n via the function ExtendGraph (line
14). If the expansion yields new candidate graphs, we append
them to C'GG. We repeat the process until there is no more
candidate left. The graphs covering all nodes in J are added
to the candidate list /'G (line 16).
ExtendGraph: to extend the current graph (lines 19-29),
we use the language model to find all possible extended graphs
from the current graph g (line 21). If after removing the node
n and its connecting edges from the extended graph eg, we get
the exact match to the current graph g (line 24), we ask the
graph-based language model for the occurrence likelihood of
the new graph formed by g and the new node n (GetProb(g,n)
at line 25). The score for the newly extended graph eg is
computed (line 25). Relevance score of n (relev_score) allows
us to give higher scores to the nodes relevant to query 7'. With
beam searching, we need to prune the extended graphs with
low scores, thus, we keep eg only if its score is in the top list
among other extended graphs at this step (line 26).

An alternative solution for ExtendGraph would be to add to
g a new node and keep only those with high occurrence prob-
abilities. However, that is less efficient since there are many
more possibilities to add a new node to g than the number of
the feasible extended graphs from g (we need to maintain only
the extended graphs for g that were observed in the corpus).

At lines 27-28, if n is not a feasible extended node accord-
ing to the graph language model, we still add it to the current
graph g, hoping that it will be connected in a later expansion.
In this case, our new graph is disconnected. The reason for
such disconnected components is as follows. Since a new API
usage graph might not occur in its entirety in the training
corpus, during the expansion of the current usage graph, we
might face the situation where smaller, yet-unrelated usages
(i.e., subgraphs) might be formed first and later connected
together via new edges to form a larger API graph.

To support this broader synthesis, we allow the intermediate
synthesized graph to be disconnected (i.e., containing discon-
nected components). Specifically, we allow an expansion in

which we add a node without any inducing edges. The score
for a disconnected graph is the average score of the scores of
its connected components. We assign the score for a connected
graph (including a single-node graph) with its occurrence
probability in the corpus. We continue to process the newly
extended graphs (line 14) and remaining API elements in R
until all elements are covered or the scores of extended graphs
are not in the top list (line 26), i.e., they are not candidates.
Finally, in the final candidate graphs, we remove the single,
disconnected nodes (line 17), since those isolated nodes are
likely the ones that were incorrectly included by the expansion
algorithm. Then, the candidate API graphs are presented.

Example. Fig. [0] illustrates the result of each expansion step
for the API usage shown in Fig.] (we show only the top-
ranked candidate graph).

1) At step 1, assume that FilelnputStream.new (labeled as
(1)) is chosen as the central node (among FilelnputStream.new
and FileOutputStream.new). At step 2, since in the training
data, File.var is likely used as a parameter for the instantiation
FileInputStream.new, it is newly added and marked with (2).

2) At steps 3-5, a variable declaration, read and close
are likely to be used on a FilelnputStream, thus FilelnputStr-
eam.decl, FilelnputStream.read, and FilelnputStream.close are
added. Relevance scores decide the order of adding the nodes.

3) At steps 6-8, since in the corpus, FilelnputStream.read is
often used to read data from a file into an array among which
an array of byte matches with the element byte[].decl. Thus,
it is added at step 6, leading to the addition of its instantiation
byte[].new at step 7. At step 8, the WHILE node is added since
in training, the model observes that FilelnputStream.read with
an array of bytes byte[].decl often goes with a while loop.

4) Step 9 is an interesting step because after step 8,
we have a small usage for reading into a file correspond-
ing to a subgraph (1)—(8), including the nodes highlighted
in a darker color. At step 9, the node FileOutputStream.write
(with a darker border) is added from WHILE, byte[].decl, and
FileInputStream.read since the smaller sub-graph involving
those nodes (6),(4),(8) and FileOutputStream.write (9) occurs
frequently. It represents a smaller usage in which a while loop
is used to read from a FilelnputStream to a buffer and write
its contents to a FileOutputStream.

5) That allows us to expand to the nodes (10)—(13), which
correspond to another usage of writing to a file via FileOutput-
Stream. Specifically, at the step 10, FileOutputStream.decl is
added because it occurs often before FileOutputStream.write.
At step 11, an instantiation with FileOutputStream.new occurs
often for a declaration of that type. Then, at step 12, File.var
is connected because it is used as an argument for such
instantiation. After that, FileOutputStream.close is inserted
because it often occurs after FileOutputSream.write. Finally,
we have a larger API usage for both file reading and writing.

If the occurrence probability of FileOutputStream.new is
higher in the training data, it will be the central API and the
order of nodes being added will be different. The usage of
writing to a file via FileOutputStream will be formed first.
There could be cases where smaller, independent usages are
expanded. We keep a disconnected graph with its connected
components, which will be connected later for the same result.

|File.var|—>| FileInputStream.new l—:l FileInputStream.decl l— i

) (1) G)
M——l FileOutputStream.new iﬁ:l FileOutputStream.decl I
(12) a1 (10)
byte[].new 1 byte[].decl |(6)

The numbers show the orders
of the API nodes and inducing edges
being added (scores not shown)

“)

S
(€]
API Elements from Context Expansion _:§I FileOutputStream.write
FileInputStream.new (0.9), FileOutputStream. new 5 ‘
(0.9), FilelnputStream.decl (0.8), FileOutput ()

Stream.decl (0.8), FileInputStream.read (0.8),
FileOutputStream.write (0.9), byte[].new (0.5),
byte[].decl (0.5), File.var (0.8), FileInputStream.
close (0.8), FileOutputStream.close (0.8), While

(13)

—>| FileOutputStream.close I

| FileInputStream.read E

,l FileInputStream.close |——

New nodes New edges
FileInputStream.new | []

File.var->FileInputStream.new
FileInputStream.new ->
FileInputStream.decl
FileInputStream.decl->
FileInputStream.read
FileInputStream.read->
FileInputStream.close
FileInputStream.decl -> FIS.close

2 |File.var
3 |FileInputStream.dec

4 |FileInputStream.read

5 |FileInputStream.close

6 |byte[].decl byte[].decl->FileInputStream.read
7 |byte[].new byte[].new -> byte[].decl

8 |WHILE FilelnputStream.read->WHILE

9 FileOutputStream.write WHILE->FileOutputStream.write

{byte[].decl,FIS.read}->FOS.write
FileOutputStream.decl->
FileOutputStream.write
FileOutputStream.new->
FileOutputStream.decl
File.var->FileOutputStream.new
FileOutputStream.write->...close
FileOutputStream.decl->...close

10 |FileOutputStream.decl

11 |FileOutputStream.new

12 |File.var
13 FileOutputStream.close

Fig. 6: Graph Synthesis Example for a Top-ranked Candidate Usage Graph (Relevance scores not shown)

1 function GraphSynthesis(Query T, APINodes J, LangModel GL)

2 Graph go = new Graph();

3 APINode central = GetCentralElement(J);

4 go.add(central);

5 go.score = GetScore(go);

6 Queue CG = 0; / unexplored graphs

7 Append(go,CG);

8 Queue FG = 0; / candidate graphs

9 while (CG # 0)
10 Take the graph g with highest score off CG
11 R =J\ g.Nodes // R: remaining API nodes in J
12 Sort(R);// Sort nodes in R by relevance scores
13 foreach Node nin R

14 GraphList Gt = ExtendGraph(g,n,GL); /Try to extend
15 if (Gt # 0) Append(Gt+,CG)

16 if (Gt.nodes\J=0) Append(Gt+,FG)

17 return Filter (FG);

18

19 //Extend g with node n and inducing edges to get new graphs
function ExtendGraph(Graph g, Node n, LangModel GL)
21 GraphList EG = GL.FindExtendingGraphs(g);

22 GraphList RG = (;

23 foreach Graph eg in EG

24 if (9=egSn)

25 eg.score = g.score x GL.GetProb(g, n) x n.relev_score(T)
26 if (eg.score on the top list) RG.add(eg);

27 if (EGis@ or (g # (eg©n) with all egs))

28 eg = g ®n with eg.score = GetScore(g & n)

29 return RG

Fig. 7: GRASYN: Usage Graph Synthesis Algorithm

VI. EMPIRICAL EVALUATION

To empirically evaluate T2API, we had conducted experi-
ments with the following questions:

RQ1. How accurate is T2API in generating API templates
and usage graphs with respect to a reference benchmark?

RQ2. How useful is the context expansion algorithm?

RQ3. How useful and relevant to the queries are the
synthesized API templates and usage graphs from T2API?

A. Data Collection

Large StackOverflow Corpus. For the mapping phase, we
trained the IBM model (part of Berkeley Aligner [18]]) with the
StackOverflow dataset (Table [l after pre-processing the posts.

TABLE I
LARGE STACKOVERFLOW CORPUS FOR TRAINING IBM MODEL

Number of posts 236,919
Size of English dictionary 701,781
The number of distinct keywords 103,165
Size of code element dictionary 11,834
Number of mappings to code per keyword 17

TABLE II
LARGE CODE AND USAGE GRAPH CORPUS TO TRAIN GRALAN
Number of projects 543
Number of source files 29,524
Number of methods 317,792
Number of extracted graphs 284,418,778
Number of unique graphs 82,312,248
Number of unique API elements 113,415

This dataset of 236,919 SO posts was processed via ACE [16].
We randomly removed 250 posts from this dataset and used
as a test set (will be explained in Translation Benchmark).
Training. We used the remaining posts to build the training
corpus, which is the collection of pairs in which each pair
consists of 1) a textual description (excluding the API elements
in the text and the code snippets), and 2) the set of extracted
API elements by ACE in text and code. See Section
Create Parallel Corpus and Mapping Model on building those
pairs. After training, T2 API performed context expansion. For
diversity, SO posts with the same snippets are excluded from
test set. Each keyword is mapped to an average of 17 APIs.

Large Code and Usage Graph Corpus. To train the graph-
based language model GralLan [12], we collected a set of 543
Java and Android projects from GitHub (Table[I)). We selected
the projects with well-established histories so that their code
is compilable and can be semantically analyzed to build usage
graphs. We collected a large number of usage graphs (284M)
with 82M unique graphs and 113,415 unique API elements.

Translation Benchmark. The results from statistical machine

English Input to
Translate

-.. StackOverflow Post # 11271458

= English input text
»»»»»»»»»»»»»»»»»»»»»»»»»» ™ Code in text -
Snippet ground truth

Please write below code for get zip code I

1

Word Translation
(Mapping)

Geocoder geocoder = new Geocoder(this, Locale.getDefault());
List<Address> addresses = geocoder.getFromLocation(currentlat, currentlng, 1);

|

Contextual Expansion

Now the list of Address contains the closest known areas. The(Address object has the
getPostalCode() function. Grab the first object and find it's Postal code.

(Expansion)
I
Graph Synthesis
(Ordering)

---T2API Decoder (Defined in Fig. 2)--

Translated Code
Graph Output

El. Precision & Recall
of Nodes and Edges

Graph of Code
Snippet Ground Truth

E2. Developers judge usefulness
of synthesized code relative to
purpose of StackOverflow post

Fig. 8: First evaluation (E1): precision and recall of synthesized code is calculated relative to the StackOverflow code snippets.
Second evaluation (E2): developer judges compare the purpose of the post to determine if the synthesized code is useful.

translations are typically evaluated against a reference trans-
lation benchmark that is manually created by humans [13}
Ch.8]. Unfortunately, no such corpus exists for English and
API usages. However, SO is in effect a bilingual corpus that
describes programming tasks in both English and code. If we
use the SO posts with English text that describes the code
snippets in the same post, we would have a benchmark. For
example, consider the post in Fig. [§] the texts in the boxes
in bold, describes how to get the zip code from an address
using the Android APIs. We can use the text as an input to
T2API. The code snippet serves as a ground truth. We curate
a benchmark of 250 posts randomly taken from the Large SO
Corpus; each test post has high rating with only one code
snippet since we want automatic comparison with our result.
We’ll explain how to extract texts to be used as input next.

B. Evaluation Settings and Procedure

E1. Evaluation against Code Snippets in StackOverflow in
Benchmark. We compared the synthesized code from T2API
against SO code snippets. We conducted our experiments with
two distinct use cases in mind. The persona in the first use case
does not know any of the API elements and writes their input
entirely in English. We refer to this as the pure input case.
This persona may be a developer who is learning the APIL. The
second persona is a developer who knows some of the API, so
he or she uses a mix of API elements and freeform text. This
case is called mixed input, e.g.,“I want to use getPostCode()
for a GPS location”. Mixed input is common in SO.

To build the input, we extract the text surrounding a code
snippet within a SO post (thick-border boxes in Fig. [§), get
the keywords and use them as a query. For mixed input, a//
keywords and the API elements within the texts are used as
input. We do not include code snippet in the mixed input to
T2API (code snippet is used as ground truth). For pure input,
those API elements as well as the code snippet are removed.
E2. Developers’ Judgement. Developer judges compare the
purpose of the post to see if the synthesized code is useful
(Section [VI-E).

Procedure. Our evaluation includes the following steps:

1. Use T2API to translate a mixed or pure input into an

output usage graph (T2API’s pipeline in Fig. [§),

2 Use the code snippet in the post as the ground truth (the
shaded box in Fig. [§),

3. In Evaluation 1, calculate precision and recall for the
nodes (API elements, control units) and the edges (data/con-
trol dependencies) among the API elements. The edges also
indicate the order,

4. In Evaluation 2, developers judge how useful our code
snippet is with respect to the purpose of a post (Section [VI-EJ.

C. Evaluation Metrics

We take a conservative and stringent approach with the
calculation of accuracy. We evaluated only the top-1 results
from T2API instead of, for example, the top-5 results. We
evaluated node accuracy (API elements and control units) and
edge accuracy (orders and dependencies) against SO code
snippets. If in the ground truth, the developer creates object
instances in a different order, we conservatively marked each
of our edges as incorrect even if the ordering would not
affect the behavior of the code. For each synthesized graph
Jsyn, We compared it against the usage graph g extracted
from the StackOverflow code snippet. We use PPA [19], a
partial program analysis tool to parse the code and build g.
We measured Precision and Recall for the sets of nodes and
edges. Recall on nodes is defined as the ratio between the
number of shared nodes in g and gy, and the number of nodes
in g. Precision on nodes is the ratio between the number of
shared nodes in g and g,,,, over the number of nodes in ggyy.
Similarly, we define Recall and Precision on edges. BLEU
score [20] was not used since it is not defined for graphs.

D. Precision and Recall Results

Fig. [0 show the distribution of precision and recall for
nodes and edges for each post through violin plots. A violin
plot combines a boxplot and a kernel density plot (shown
vertically). The boxplot is represented as the box in the middle
of the plot. The bottom of the box is the 25th percentile and
the top is the 75th. The horizontal line is the median. The left
of each violin plot is precision and the right is recall. Table
shows the median precision and recall for each input type (pure
English or mixed code and English), and each mapping model:
the Word Mapping rows correspond to the mapping model

Node Precision (left) and Recall (right)

Percentage

T T T T
Word Pure Word Mix Expansion Pure Expansion Mix

Edge Precision (left) and Recall (right)

Percentage

Word Pure Word Mix Expansion Pure Expansion Mix

Fig. 9: Violin plots of the precision and recall distributions
for the 250 posts in our benchmark. Our Contextual Expansion
approach outperforms Word Mapping (IBM Model) approach.

without context expansion (IBM Model), while the Expansion
rows are for the ones with context expansion.

Node Accuracy. In Fig.[9] all the node distributions are clearly
skewed towards higher precision and recall. For example,
with Expansion and mixed inputs, for over half of the posts,
T2API achieves 100% recall and for 75% of the posts,
it reaches 80% recall. The precision is also skewed towards
higher values, with a median of 67% and over 25% of the
posts having 100% precision. To put the results in context, if
SO code snippets have a median of 10 API elements, T2 API
produces all of them (recall is 100%). It correctly derives 6.7
API elements. Users need to remove 3.3 elements. This is
important for developers since they do not need to find extra
elements, which cost much more effort than removing a few
incorrect ones. For the bottom 25% of posts, users need to find
1 additional API element. The accumulated average precision
and recall are 64.9% and 94.1% (not shown).

The mapping approach with expansion substantially out-
performs the word mapping approach (mapping without
expansion) on node recall, up to 20% points higher. For
precision, two approaches are more evenly matched, however
in the pure-input setting, the precision for nodes is 9% higher.

TABLE III
GRAPH SYNTHESIS PRECISION AND RECALL (%). DISTRIBUTIONS ARE
SKEWED AND DISPLAYED IN FIGURE[9]

Median Node | Median Edge
Input Mapping Model Prec Rec |Prec Rec
Pure Word Mapping 50 80 29 36
Pure Con. Expansion (T2AP1)| 57 88 33 50
Mixed Word Mapping 67 80 37 33
Mixed Con. Expansion (T2AP1)| 67 100 50 60

Edge Accuracy. When we predict the edges (orders and
dependencies), with Expansion for mixed input, the result
is skewed towards larger values, with median precision and
recall of 50% and 60%, respectively. At the 75th percentile,
the corresponding values are 72% and 99%. For the simple
Word Mapping, the edge precision and recall are skewed
towards lower values with the median precision and recall of
29% and 37%, respectively. By considering contexts, T2API
with Expansion drastically outperforms Word Mapping by
including the missing but relevant nodes.

T2API produces good translation even when users do not
know any of the API elements. For pure English inputs,
the graph synthesizer with Expansion model has high node
precision and recall of 57% and 88%, respectively. Contextual
Expansion still outperforms Word Mapping in this use case.
Interestingly, comparing the top performing graph synthesizer
with Expansion for mixed and pure inputs, we see that people
who use pure English descriptions only have a 10 point and 12
point reduction in median precision and recall compared with
those who mix code and English in their queries. A similar
phenomenon applies to the edges. The reason is that irrelevant
code elements could be included in the mixed posts.

Note: 85% of the synthesized graphs do not exist as a
whole in the training data, thus, cannot be found by code
search, and all top-1 graphs are unique.

E. Result from Evaluation by Developers

In this experiment, we asked human judges to evaluate how
useful our synthesized templates/graphs are. Four professional
developers and five graduate students who are not involved in
this work evaluated the top synthesized results for 100 ran-
domly sampled posts from our benchmark. We used the
following evaluation procedure:

1) As described in Fig.[§] we synthesized code by translating
the English text (mixed input) contained in each Stack-
Overflow post. We used our most accurate approach, i.e.,
the graph synthesizer with Expansion model.

2) We randomly assigned 100 StackOverflow posts in our
benchmark to two judges each.

3) Each judge was shown the post title, textual descriptions,
existing snippet, and synthesized code (e.g., Fig. [I0) and
API usage graph.

4) Judges independently determined if the synthesized code
for each post is ‘useless’ or ‘useful’ given the original
purpose of the StackOverflow post.

5) When disagreement occurred, we included a discus-
sion phase between pairs of judges. If a consensus is
not reached between judges, we conservatively assign
T2APT’s synthesized code to the ‘useless’ category.

Developers judge the usefulness of our synthesized code
snippet with respect to the purpose of the post. A synthesized
API snippet is considered useful if a subject thinks that the
code snippet satisfies the purpose of the post. It is useless if the
subject would rather not use the generated snippet and would
rather re-write the code. The judges use the existing snippet
as context to evaluate the purpose. If our generated code is
incorrect, they could more easily recognize the problem. If
our solution is a correct alternative but different, the judges
may see it as incorrect, biasing against our solution. In either
case, the bias is not toward a “useful" categorization.

Of 100 resulting API templates, 77 are deemed to be useful
by two judges. This is consistent with the state-of-the-art
approaches. SWIM’s evaluation [9] involved one professional
developer judging the output of 30 queries. They found that
21/30 or 70% of their top recommendations were relevant to
the query. DeepAPI [3]] had two developers evaluate 30 queries
and found that 23/30 or 77% of the top snippets were relevant.
Not only is T2API competitive with the existing work in terms
of developers perceived usefulness, it is able to translate larger
queries into more complex code templates (with control units
and dependencies). All the data for this study is available on
our website. Let us explain in details the result next.

F. Result Analysis

There are two recent related work to T2API: SWIM [9]
(phrase-based SMT with IBM Model and n-gram) and Deep-
API [3] (with RNN Encoder-Decoder).

T2API can take a large input of English text as in SO posts,
and synthesize a sophisticated API template and usage graph
specifically with data and control dependencies. In our study,
we used T2API on the texts of real-world SO posts with +131
words. For the output, it synthesizes a usage with up to 23 API
elements and control units. Among 250 resulting templates, 39
of them (15.6%) have control units (e.g.,for, if, while). All of
them have more than one API element.

In the evaluation for SWIM [9], the number of words in
the inputs is from 1-4, while the number of generated API
elements is from 1-3. T2API can synthesize conditions for
conditional statements, loop bodies, method arguments, and
overriding methods because our graph representation, API
Usage Graph [17]] contains all of those. In contrast, SWIM
uses syntactic rules to generate control units, but does not use
program dependencies and so cannot generate sophisticated
data and control dependencies.

For DeepAP], since it relies on RNN, the larger the size of
the input, the higher complexity of the training and predicting.
In fact, when DeepAPI was publicly available, as we entered
the larger JDK SO posts in our benchmark into DeepAPI
online web tool [21]], it took several minutes (due to its high
computation) and most of the resulting code were irrelevant.
Regarding output, DeepAPI’'s sequences are a list of API
elements without data/control dependencies.

Illustrating examples. To illustrate the differences, let us an-
alyze the outputs to the same queries reported in their papers.

All three tools reported the result dealing with the query on
file copying. The SWIM output is simply File.Copy (Table 1
of [9]). T2API generates an usage graph and code template

—_

LocationManager varLocationManager;

varLocationManager.removeUpdates();

Location varLocation = varLocationManager.
getLastKnownLocation();

if (varLocation.isProviderEnabled();){

varLocation.getLatitude();

varLocation.getLongitude();

Log.i();

varLocation.requestLocationUpdates();

wW N

Context varContext;
varContext.getSystemService();

— O Woo~NO O A
—

—_

Fig. 10: Translated template for SO post 13761430 (how to
find the previous location when GPS is not present)

that opens an Input- and an OutputStream and loops through
each byte (see Fig. [6). The result from DeepAPI has only 6
out of those 13 APIs produced by T2API (Table 2 of [3]).
Moreover, DeepAPI does not produce program dependencies
and control units as in T2API.

As another example, the query “play audio” leads to the
incomplete sequence from DeepAPI: SourceDataline.open
SourceDatalLine.start. In contrast, our synthesized snippets to
play audio contain various nodes/edges that set up a Medi-
aPlayer and a data source, play the audio, and create a callback
listener to handle what happens when the audio finishes.

SWIM’s result for the query “execute sql statement” in-
cludes SglCommand.ExecuteNonQuery and ExecuteReader,
while that from DeepAPI is not quite relevant to SQL: Connec-
tion.prepareStatement, PreparedStatement.execute, and Pre-
paredStatement.close. T2API is able to generate the API
usage that creates an SQLLiteDatabase object, prepares a
command, and executes it via SQLLiteDatabase.execSQL.

The preceding complex snippets are not an exception. One
of the more sophisticated cases that T2API handles involves
getting the GPS location when the GPS is off (Fig. [T0).
Limitations. T2API also has the following limitations. First,
there are sometimes extra code elements that GRASYN found
were common in complete programs in frequent patterns, but
may not be useful in an answer to a particular query. For
example, the Log statement (line 7, Fig.[T0) is not needed, and
getSystemService (line 11) is a common next step once the
location is found, but not required for this query. Advanced
NLP analysis on queries could improve the result. Second,
most of incorrect cases are caused by the out-of-vocabulary
issue (un-seen APIs). Finally, we depend on large corpora.
Less common APIs might not fit with this approach. For JDK
or Android, SO is a useful but noisy corpus.

G. Performance: Time and Space Complexity

Table [[V| shows T2API’s complexity (measured on a com-
puter with AMD Phenom II X4 965 3.0GHz, 8GB RAM, and
Linux). Storage cost is reasonable since we use beam search.
Training time is extensive. However, one can train it off-line.
With the median of 7 keywords leading to 8 synthesized API
elements for a post, the suggestion time is 11 seconds. In
comparison, SWIM [9] takes an average of 15 seconds to
make suggestions of 1-3 API elements from an input of max
4 words. Although Desai ef al. [11] can make suggestions

TABLE IV
TIME AND SPACE COMPLEXITY

GraLan + GRASYN

3.7GBs total
45 hrs/543 projects
11.2 seconds/post

Mapping + Expansion

2.5GBs/236K posts
8hrs/236K posts
0.08 seconds/post

Storage
Training time
Suggestion time

in under 2 seconds, their vocabulary is for a domain-specific
language and contains only 144 words compared to our 103k
words. DeepAPI does not report the suggestion time [3].

H. Threats to Validity

Our evaluation is based on sampled SO posts. Unlike
reference translations that were designed to evaluate statistical
machine translation between natural languages, these posts
were not created with the intention of evaluating English to
code translation and have the following limitations: English
text may lack descriptiveness compared to code snippets, code
snippets may be incomplete compared to the English text, and
code may be mixed in with freeform text. In our benchmark
of 250 posts we tried to balance code and English. We found
12 cases where synthesized code is more complete than the
SO code snippets. They were automatically counted toward
incorrect ones. However, they were considered as useful by
our judges. Thus, T2APT’s actual accuracy could be higher.

In our human study, to address the balance of English and
code in our benchmark, we had developers judge the useful-
ness of generated code. To reduce bias, we used the standard
approach having two judges for each post. To reduce human
errors, we asked professional developers. Showing subjects the
SO code snippet might bias against T2API as explained.

Unlike a search problem that uses short inputs, our inputs
are an the entire English portion of the StackOverflow post
and the comparison output is the corresponding code snippet.
This is consistent with the use of use of reference translation
in SMT. It is unclear how well T2API would perform with
short or poorly formed input queries.

A final threat is that we only considered Android and the
associated Android and Java API calls. Although the technique
is not inherently tied to a particular API the current evaluation
was limited to Android.

VII. RELATED WORK

Our work is related to the statistical NLP approaches to
generate code from text. SWIM [9] first uses IBM Model
with word translation to produce code elements. It then uses
syntactic rules on those elements to build code sequences close
to the query. In comparison, after IBM Model, we perform
context expansion that expand the set of APIs in a priority
order. We showed that with context expansion, the results
improves over the traditional IBM model (Table [[TI). Second,
we use graph synthesis, while SWIM generates code based on
syntactic rules, and does not support program dependencies.
Third, while both SWIM and T2API produce conditions for
conditional statements, loops, method arguments, each relies
on different mechanisms. T2API uses graph synthesis where
the API usage graph in GraLan [12] contains the information.

In contrast, SWIM relies on synfactic rules to generate those
statements, but does not use program dependencies and so
cannot generate data/control dependencies.

DeepAPI [3] uses RNN to generate API sequences for a
given text by using deep learning to relate APIs. In com-
parison, we use graph-based translation with graph synthesis.
DeepAPI uses deep learning on sequences. Their synthesized
code is a sequence of APIs without parameters, arguments,
data/control dependencies, and control units as in T2 APIL.

Desai et al. [[11] synthesize domain-specific languages from
English. A user is required to map key terms in English to the
terminals in the DSL. Ye et al. [22] use Skip-gram model on
API documentation/tutorials to produce embeddings to relate
words and APIs. They improve code retrieval from texts, rather
than code synthesis. T2API also improves over the T2API
tool [23]] in which context expansion and graph synthesis
were tightly integrated and extensive empirical studies were
performed for the evaluation of T2 API.

Allamanis et al. [24] introduce a jointly probabilistic model
with tree representation for short natural language utterances
and code snippets. Anycode [10] uses a probabilistic CFG
with trees for Java constructs and API calls to synthesize
small Java expressions. Maddison and Tarlow [25] present a
generative model for source code, which is based on AST
structures. Other NLP approaches have been used to support
code suggestion [26], [27], [28]], code convention [29], name
suggestion [30]], API suggestions [31]], code mining [32]], etc.

Others use program analysis to synthesize code. Buse and
Weimer [8] use path sensitive dataflow analysis, clustering,
and pattern abstraction to synthesize API usages from code
examples. They do not handle textual queries. Others explore
structure relations [33], call graphs (FACG [34]) program de-
pendencies (MAPO [35], Altair [36]), input/output types [37].

While we generate code, code search approaches mainly
use IR approaches to improve accuracy of retrieving existing
code [38], [39], [40], [33], [41], [42], [43]. Other IR-based
search approaches consider the relations among APIs [6], [44],
[45], [41] via using API graphs, call graphs, or dependen-
cies [7], [4]], [5]. Semantic code search approaches use context-
aware retrieval [46], temporal specifications [47], constraint
solver [48]], symbolic execution [49]], formal logic and theorem
prover [S0], test execution [51]], [52], control flow [S3].

VIII. CONCLUSION

We present a novel context-sensitive, graph-based statistical
translation approach that takes a query and synthesizes com-
plex API code templates and graphs with control units and
dependencies among API elements. While we use texts from
real-world SO with large numbers of words, the synthesized
code captures more complex usages than the state-of-the-art
sequence-based approaches. Human subjects including profes-
sional developers judged that 77% of our top-1 synthesized
templates are useful to solving the problem in the posts. Our
snippets are made “natural” by our graph synthesis algorithm.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) grants CCF-1723215, CCF-1723432, TWC-
1723198, CCF-1518897, and CNS-1513263.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

REFERENCES

E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE’12.
IEEE Press, 2012, pp. 266-276.

E. Duala-Ekoko and M. P. Robillard, “Using structure-based recommen-
dations to facilitate discoverability in APIs,” in Proceedings of the 25th
European Conference on Object-oriented Programming, ser. ECOOP’11.
Springer-Verlag, 2011, pp. 79-104.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API Learning,”
in Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016. ACM, 2016.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in Proceedings
of the 33rd International Conference on Software Engineering, ser. ICSE
’11. ACM, 2011, pp. 111-120.

C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
Source Code Examples via API Call Usages and Documentation,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, ser. RSSE '10. ACM, 2010, pp.
21-25.

W. Zheng, Q. Zhang, and M. Lyu, “Cross-library API recommendation
using Web search engines,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE *11. ACM, 2011, pp. 480—483.
W.-K. Chan, H. Cheng, and D. Lo, “Searching Connected API Subgraph
via Text Phrases,” in Proceedings of the 20th International Symposium
on the Foundations of Software Engineering, ser. FSE *12. ACM, 2012,
pp. 10:1-10:11.

R. P. L. Buse and W. Weimer, “Synthesizing API Usage Examples,” in
Proceedings of the 34th International Conference on Software Engineer-
ing, ser. ICSE *12. IEEE Press, 2012, pp. 782-792.

M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: synthesizing what I
mean,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE 2016. ACM Press, 2016.

T. Gvero and V. Kuncak, “Synthesizing Java expressions from
free-form queries,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: ACM, 2015, pp. 416-432. [Online]. Available: http:
//doi.acm.org/10.1145/2814270.2814295

A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
S. R, and S. Roy, “Program synthesis using natural language,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16. ACM, 2016, pp. 345-356.

A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Proceedings of the 37th International Conference
on Software Engineering, ser. ICSE 2015. IEEE CS, 2015.

P. Koehn, Statistical Machine Translation, 1st ed. New York, NY, USA:
Cambridge University Press, 2010.

P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based translation,”
in Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2003, pp. 48-54. [Online].
Available: http://dx.doi.org/10.3115/1073445.1073462

P. E Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The
mathematics of statistical machine translation: parameter estimation,”
Comput. Linguist., vol. 19, no. 2, pp. 263-311, Jun. 1993.

P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE "13. 1EEE Press, 2013,
pp. 832-841.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of Conference on the Foundations of Software Engineering,
ser. ESEC/FSE ’09. ACM, 2009, pp. 383-392.

“The BerkeleyAligner,” https://code.google.com/p/berkeleyaligner/.

B. Dagenais and L. Hendren, “Enabling static analysis for partial Java
programs,” in Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications,
ser. OOPSLA ’08. New York, NY, USA: ACM, 2008, pp. 313-328.
[Online]. Available: http://doi.acm.org/10.1145/1449764.1449790

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A Method
for Automatic Evaluation of Machine Translation,” in Proceedings
of the 40th Annual Meeting on Association for Computational

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]
[40]

[41]

Linguistics, ser. ACL ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 311-318. [Online]. Available:
http://dx.doi.org/10.3115/1073083.1073135

“Deep API Learning,” http://bda-codehow.cloudapp.net:88/.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE "16. ACM, 2016, pp. 404—415.

T. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, and T. N. Nguyen,
“T2api: Synthesizing api code usage templates from english texts with
statistical translation,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 1013-1017.
[Online]. Available: http://doi.acm.org/10.1145/2950290.2983931

M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal modelling
of source code and natural language,” in Proceedings of the 32nd
International Conference on Machine Learning, ser. ICML *15. ACM,
2015.

C. J. Maddison and D. Tarlow, “Structured generative models of natural
source code,” in Proceedings of the 31st International Conference on
Machine Learning (ICML), June 2014.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. IEEE Press,
2012, pp. 837-847.

M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of 12th
IEEE Working Conference on Mining Software Repositories (MSR’15).
IEEE CS, May 2015.

L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A
tree-based convolutional neural network for programming language
processing,” CoRR, vol. abs/1409.5718, 2014. [Online]. Available:
http://arxiv.org/abs/1409.5718

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the International Symposium on
Foundations of Software Engineering, ser. FSE 2014. ACM, 2014, pp.
281-293.

, “Suggesting accurate method and class names,” in Proceedings of
the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE 2015. ACM, 2015.

V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
'14. ACM, 2014, pp. 419-428.

M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proceedings of the 10th
1IEEE Working Conference on Mining Software Repositories (MSR’13).
IEEE CS, May 2013, pp. 207-216.

S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: A search engine for open source code supporting
structure-based search,” in Proceedings of the ACM Conference on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. ACM, 2006, pp. 681-682.

Q. Zhang, W. Zheng, and M. R. Lyu, “Flow-augmented Call Graph: A
New Foundation for Taming API Complexity,” in Proceedings of the
14th International Conference on Fundamental Approaches to Software
Engineering, ser. FASE’11/ETAPS’11. Springer-Verlag, 2011, pp. 386—
400.

H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and Recommending API Usage Patterns,” in Proceedings of the 23rd
European Conference on Object-Oriented Programming. Springer,
2009, pp. 318-343.

F. Long, X. Wang, and Y. Cai, “Api hyperlinking via structural overlap,”
in Proceedings of the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ser. ESEC/FSE ’09. ACM, 2009, pp. 203-212.
D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, “Jungloid Mining:
Helping to Navigate the API Jungle,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "05. ACM, 2005, pp. 48-61.

“Black Duck Open Hub,” http://code.openhub.net/.

“Codase,” http://www.codase.com/.

K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Component rank: Relative significance rank for software
component search,” in Proceedings of the 25th International Conference
on Software Engineering, ser. ICSE *03. 1EEE, 2003, pp. 14-24.

D. Puppin and F. Silvestri, “The Social Network of Java Classes,” in
Proceedings of the 2006 ACM Symposium on Applied Computing, ser.
SAC ’06. ACM, 2006, pp. 1409-1413.

http://doi.acm.org/10.1145/2814270.2814295
http://doi.acm.org/10.1145/2814270.2814295
http://dx.doi.org/10.3115/1073445.1073462
http://doi.acm.org/10.1145/1449764.1449790
http://dx.doi.org/10.3115/1073083.1073135
http://doi.acm.org/10.1145/2950290.2983931
http://arxiv.org/abs/1409.5718

[42]

[43]

[44]

[45]

[40]

[47]

N. Sawadsky, G. C. Murphy, and R. Jiresal, “Reverb: Recommending
code-related web pages,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE °13. 1EEE Press, 2013,
pp. 812-821.

J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI *10. ACM, 2010, pp. 513-522.
M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A Search Engine for Finding Highly Relevant Applications,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE *10. ACM, 2010, pp.
475-484.

Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommending
random walks,” in Proceedings of the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC-FSE "07. ACM,
2007, pp. 15-24.

N. Sahavechaphan and K. Claypool, “Xsnippet: Mining for sample
code,” in Proceedings of the Conference on Object-oriented Program-
ming Systems, Languages, and Applications, ser. OOPSLA’06. ACM,
2006, pp. 413-430.

A. Mishne, S. Shoham, and E. Yahav, “Typestate-based semantic code
search over partial programs,” in Proceedings of the ACM International

(48]

[49]

[50]

[51]

[52]

[53]

Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’12. ACM, 2012, pp. 997-1016.

K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp. 26:1-26:45,
Jun. 2014.

K. T. Stolee, S. Elbaum, and M. Dwyer, “Code search with input/output
queries: Generalizing, ranking, and assessment,” J. Syst. Softw., 2015.
J. Penix and P. Alexander, “Efficient specification-based component
retrieval,” Automated Software Engg., vol. 6, no. 2, pp. 139-170, Apr.
1999.

0. A. Lazzarini Lemos, S. K. Bajracharya, and J. Ossher, “CodeGenie:
A tool for test-driven source code search,” in Companion to the 22nd
ACM SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion, ser. OOPSLA °07. ACM, 2007, pp.
917-918.

S. P. Reiss, “Semantics-based code search,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE *09. IEEE
Computer Society, 2009, pp. 243-253.

S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for
reusing open source code on the web,” in Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE "07. New York, NY, USA: ACM, 2007, pp. 204—
213. [Online]. Available: http://doi.acm.org/10.1145/1321631.1321663

http://doi.acm.org/10.1145/1321631.1321663

