
Test Re-prioritization in Continuous Testing Environments

Yuecai Zhu
Department of Computer Science

and Software Engineering
Concordia University

Montreal, QC, Canada
Email: zhuyuecai@gmail.com

Emad Shihab
Data-driven Analysis of Software Lab (DAS)

Department of Computer Science
and Software Engineering

Concordia University
Montreal, QC, Canada

Email: emad.shihab@concordia.ca

Peter C. Rigby
Department of Computer Science

and Software Engineering
Concordia University

Montreal, QC, Canada
Email: peter.rigby@concordia.ca

Abstract—New changes are constantly and concurrently
being made to large software systems. In modern continu-
ous integration and deployment environments, each change
requires a set of tests to be run. This volume of tests leads
to multiple test requests being made simultaneously, which
warrant prioritization of such requests. Previous work on
test prioritization schedules queued tests at set time intervals.
However, after a test has been scheduled it will never be
reprioritized even if new higher risk tests arrive. Furthermore,
as each test finishes, new information is available which
could be used to reprioritize tests. In this work, we use the
conditional failure probability among tests to reprioritize tests
after each test run. This means that tests can be reprioritized
hundreds of times as they wait to be run. Our approach
is scalable because we do not depend on static analysis or
coverage measures and simply prioritize tests based on their
co-failure probability distributions. We named this approach
CODYNAQ and in particular, we propose three prioritization
variants called CODYNAQSINGLE, CODYNAQDOUBLE and
CODYNAQFLEXI. We evaluate our approach on two data sets,
CHROME and Google testing data. We find that our co-failure
dynamic re-prioritization approach, CODYNAQ, outperforms
the default order, FIFOBASELINE, finding the first failure and
all failures for a change request by 31% and 62% faster,
respectively. CODYNAQ also outperforms GOOGLETCP by
finding the first failure 27% faster and all failures 62% faster.

Keywords-Regression Testing; Test Minimization; Dynamic
Test Prioritization; Test Dependency; Continuous Testing; Con-
tinuous Integration

I. INTRODUCTION

The practice of releasing often and releasing early - also
known as rapid release - has seen wide adoption in the
software engineering field [1]. A key technology to enable
rapid release is the use of a continuous integration (CI)
process, where feedback on changes to the software are
given quickly [5]. CI requires continuous testing of every
change which can be very expensive.

For large projects, the burden of continuous testing can
be significant and lead to many thousands of tests that are
triggered daily. Prior studies have shown that for industrial
projects with as little as 100 changes, such as the video
conference system analyzed in Marijan et al.’s work [14], the
testing time may surpass 2 days. This long testing cycle can

become a bottleneck delaying the development and release
of code. To address this issue, prior work, which we refer to
as GOOGLETCP, has proposed the reordering of tests after
a certain time period has passed [7].

Although prior work has been able to improve the speed
of testing, most studies are based on the assumption that tests
are independent. In practice with GOOGLETCP this means,
that tests are prioritized once when the request is made. We
argue that the tests (or their failures) are not independent
and that prior test outcomes should be used to prioritize
the continuous testing efforts. In particular, we propose the
test re-prioritization approach, CODYNAQ, which uses the
co-failure distributions of tests to dynamically reprioritize
queued tests. For example, if test A and test B co-fail in the
past 75% of the time, then if we observe a failure of test A
in the current run, we may be able to speed up the execution
of test B since there would be a high probability that it will
fail as well. In fact, as we show later, more than 58% of the
tests in CHROME co-fail with at least another test.

Our approach introduces two novel concepts: first, prior-
itization based on the co-failure distribution of tests, and
second, re-prioritization after each test run. We implement
this approach as the single queue re-prioritization, CODY-
NAQSINGLE. Since we continuously reprioritize tests, we
find that tests with low failure probabilities can be pushed
back in the queue (i.e. “starved”) and delay final test result
for a change. To deal with this problem, we introduce a
double re-prioritization queue, CODYNAQDOUBLE, and a
flexible re-prioritization queue, CODYNAQFLEXI.

To evaluate CODYNAQ and compare it with the state-of-
the-art, GOOGLETCP, we use two data sets. The first is the
internal Google testing data that Elbaum et al. [7] released
when developing GOOGLETCP. The second is scraped data
from the CHROME project which runs as many as 149 tests
per minute. The CHROME data set includes over 4.4 million
test runs.

Our goal is to speed-up the detection of test failures. We
use the actual test request order as a baseline and compare the
speedup/slowdown we attain in finding the first failure and
the time to find all failures for each request. On both data sets



Table I: The median and maximum number of test requests
per minute

Median Maximum
Google 27 2,461
CHROME 26 149

CODYNAQ outperforms the state-of-the-art, GOOGLETCP.
CODYNAQ is most effective when there are many co-failures
and the speedup compared to GOOGLETCP can be as much
as 26.65% and 61.8% faster in finding FIRSTFAIL and
ALLFAIL respectively. In general, we are able to find the first
failure and all failures approximately 11.33% and 61.84%
faster than the default order (FIFOBASELINE) in CHROME
and find the first failure and all failures 31.01% and 39.60%
faster in the Google data set.

This paper is organized as follows. We provide background
on continuous testing in Section II. Section III summarizes
the related work. Section IV sets up our case study and
introduces our proposed re-prioritization algorithms and
evaluation criteria. Section V, presents our preliminary results.
Section VI presents the results of our case study. Section VII
discusses how data set characteristics can impact which re-
prioritization algorithms should be used. Sections VIII and
IX discuss the threats to validity, future work, and conclude
the paper.

II. BACKGROUND

The continuous integration process and the sheer volume
of changes at large companies, such as Google and Microsoft,
derive a need for efficient test prioritization techniques. In
most cases, the status quo is to prioritize tests based on
their request order. We suggest that co-failure conditional
probabilities based on the past failure distributions may lead
to finding failures earlier.
Multi-Request Environment: Both, Marijan et al. [14]
and Elbaum et al. [7] reported heavy work loads in the
product testing queues. We find that CHROME has a similarly
heavy load. In the CHROME project, when a new change is
submitted for review, the developer or reviewer requests a
set of tests to determine the quality of a change. Usually the
set of tests requested are different from those requested for a
different change. We will refer to the set of tests requested for
a new code change as a test request. In some cases, a large
number of tests can be requested for each change leading
to slow test results and delaying the merging of changes.
Long wait times for test results can be a serious issue when
developers need to pass quality checks before moving onto
other work.

To solve this problem, multi-request test environments
facilitate the handling of multiple test requests at the same
time. Figure 1 shows the distribution of test requests and
Table I shows the median and maximum number of test
requests per minute. As the table shows, in CHROME, a

Figure 1: Number of changes submitted to the test queue
per minute for Google and CHROME

median of 26 tests are requested per minute, and in extreme
cases, that number can be as high as 149 test requests. In
the Google data, the median is 27 test requests per minute,
and in extreme cases, it can be as high as 2,508 test requests
per minute.
Concurrent Test Request Execution: In a multi-request
environment, multiple test machines are used and tests
are run in parallel. On both CHROME and at Google the
default approach is to schedule tests based on their request
time. This common strategy is used as our FIFOBASELINE
approach. Elbaum et al. proposed to schedule tests only
based on their assigned priority in the dispatch queue [7].
Since tests are scheduled solely based on their priority
without considering when they are requested, test requests
are executed concurrently.

We illustrate this idea in figure 2, where test requests
R1, R2, R3 are submitted in order, but the priority of their
tests T1, T2, T3 is not based on a FIFO scheme. Rather, the
test execution order is based on some other priority scheme.
We adopt this idea in CODYNAQ, i.e., we also reprioritize
tests based on their failure likelihood and not their arrival
order.

III. RELATED WORK

Program analysis based test selection and prioritization
techniques have been extensively researched in the regres-
sion testing literature [13][18][10][21][17][15][16]. Kim and
Porter [11] were the first to use historical test failure
distributions. Their approach does not consider multiple test
requests or re-prioritization. Elbaum’s et al. work was the first
to acknowledge the problems of multiple test requests and
to employ historical failures. Elbaum et al. [7] proposed the
GOOGLETCP algorithm and evaluated it by the time required
to provide feedback on failing tests. In their approach, they



Figure 2: Example of concurrent test execution

prioritize tests in the scope of the whole waiting queue
instead of per request. When the prioritize window checking
condition is met, a certain number of tests in the head of
the waiting queue will be pulled into a prioritized queue and
are scheduled to be run. This prioritized queue is referred
to as the dispatch queue. They prioritize test suites in the
dispatch queue based on how often a test has failed in the past
without considering when the test is requested. Hence, test
requests are executed concurrently and developers obtain the
test results faster than in the traditional approaches. Elbaum
et al.’s approach is limited because once a test is prioritized
in the dispatch queue, it will not be reprioritized before it is
run missing co-failure information.

A further problem commonly seen in real time tasks
scheduling is starvation of low priority tasks. To solve this
problem, Elbaum et al. [7] introduced an algorithm called
prioritize window checking. We further develop this approach
with double queues and flexible double queues prioritization
models.

Marijian et al. [14] also improved test case prioritization in
continuous regression testing and used test execution time as
one of the metrics to evaluate their algorithm. Their approach
assumes a limit on time allotted for test execution and does
not make use of runtime results. Furthermore they only
prioritize tests in the scope of each change request. Compared
to our approach, they did not reprioritize tests and thus
prioritization becomes non-optimal after a few tests are run.

Saff et al. [20] presented a form of continuous testing
where regression tests are run continuously as developers
write code. This work, however, focuses on the protocol of
continuous testing in CI instead of the regression testing
optimization techniques. Jiang et al. [9] considered the use
of test case prioritization following code commits to help
organizations reveal failures faster in continuous integration
environments. However their work focus on improving fault
localization with test case prioritization techniques and hence

solves a different problem.
Our work is novel in the use of co-failure distributions and

re-prioritization after each test run. These simple advances
allows our approach to outperform the state-of-the-art.

IV. CASE STUDY SETUP

Our paper presents an approach to prioritize testing in
a multi-request environment. In this section, we detail
the methodology, highlighting the data, the prioritization
algorithms, and the performance evaluation criteria used to
compare the proposed algorithms.

A. Case Study Data

To perform our case study, we require test request and
execution data. We obtained data from two different projects
- namely, Google’s internal test data provided by Elbaum
et al. [7] and CHROME data, which we mined. We detail
each data set below.
Internal Google data: Elbaum et al. [7] made the test
data used in their study publicly available. The data set
provides tests from two phases, the pre-submission and post-
submission (of commits) testing. Like Elbaum et al. we use
the post-submission testing data. The data set contains 11,457
change requests that result in 847,057 test executions, which
are executed over 17 days. We also obtain the time cost and
the result of each test execution. We separate the data set
into two periods since we need two folds, a training data set
to obtain the co-failure distributions and a testing data set to
evaluate the re-prioritization algorithms.
CHROME: CHROME has two sub-projects: the Chromium
web browser and the operation system Chromium OS. Every
source code change in CHROME is reviewed and tested after
submission. Once a change is submitted, reviewers can select
the tests that they think need to run against the change.1 All

1In most cases, these tests can be considered as test suites since they are
composed of multiple tests



of the test execution information is recorded in their code
review tool. We mine this data to obtain 1) the test requests,
2) the submission time of a test request and 3) the outcome of
each test execution. CHROME does not store the running time
for each test. As a result, we randomly assigned a running
time between 1 and 60 minutes. While this affects the validity
of our approach for use on by CHROME developers, it has no
impact on our work from a theoretical research perspective of
evaluating our test prioritization strategies. Our CHROME data
set contains 235,917 change requests that result in 4,487,008
test executions. For experimental purposes, we divided the
data into 5 six month periods, which also corresponds to
CHROME’s six month release cycle.

B. Prioritization Algorithms

To cope with the large number of test requests, prior-
itization algorithms are often used to facilitate effective
test executions. In this section, we first discuss the current
state-of-the-art algorithm used to prioritize test execution,
FIFOBASELINE [7], [19], [11] and then we present three
novel algorithms that we propose to effectively prioritize test
executions.
FIFOBASELINE: The most basic algorithm is to provide no
prioritization of tests at all. In such a case, tests are prioritized
based on a First-In-First-Out criteria. This approach is very
common and in our discussions with companies is used by
Ericsson, Microsoft and Google by default. When multiple
tests are requested at the same time, they are put into a
dispatch queue. In our experiments, we set the dispatch
queue to a size of 60 per machine. The order of the tests
in the dispatch queue is arbitrarily determined, and in most
cases is based on the request time. We refer to this as the
FIFOBASELINE. Previous work showed that, prioritizing tests
randomly is as cost-effective as advanced program analysis
based techniques [11].

However, prior work by Kim et al. suggested that historical
data from test cases can be leveraged to prioritize tests so
that they fail earlier [11]. Hence, we are motivated by the
aforementioned work and the idea that test failures are not
completely independent [22], and devise three algorithms
that leverage this insight. Specifically, our algorithms take
into consideration the past test co-failure distributions to
dynamically prioritize test execution. We adopt a dynamic
scheduling protocol in real time task scheduling to perform
the test re-prioritization. Full details of the original dynamic
scheduling protocol can be found in Chetto et al.’s task
scheduling work [2]. Essentially, the algorithm updates the
test order in the dispatch queue based on the result (i.e.,
pass/fail) of the recently completed tests in the same request.
The computation of the modified priority is calculated based
on the following scoring function.

Given a pair of tests t1, t2 in the same request, the scoring
function is given as follows:

new sc = previous sc+ (P (t2 = fail|t1 = fail)− 0.5)
(1)

If t1 is passed, then:

new sc = previous sc+ (P (t2 = fail|t1 = pass)− 0.5)
(2)

If t2 is a newly added test, then we can either set its
conditional failure rate to 1 to give it the maximum priority,
or 0.5 to maintain its original priority. However, since we
are only interested in the performance of re-prioritization
based on past co-failure, we did not reprioritize new tests
in our simulation. Equation 1 predicts the failure rate of a
test by its co-failure history, while Equation 2 is another
way to estimate its failure rate. Algorithm 1 explains the
procedure on how to reprioritize a test based on the two
aforementioned equations. In Algorithm 1, line 2 checks
whether the input test t is a recently added test, namely no
co-fail history. If t is not a new test then reprioritize t by
Equation 1 at line 4 if tfinish fails or by Equation 2 at line
6 otherwise. Algorithm 1 takes no action if t is a new test.
The time complexity of rePrioritize() is O(1).

Algorithm 1: rePrioritize(t, tfinish)

input : tfinish : the test that just finished its execution
t : the test that needs to be reprioritized

Result: reprioritize t based on the result of tfinish
1 initialization;
2 if t is not a new added test then
3 /* Apply Equation 1 to update the

priority of t if tfinish fails. */
4 if tfinish failed then t.setPriority(t.getPriority

+(P (t fails|tfinish fails)− 0.5)) ;
5 /* Apply Equation 2 to update the

priority of t if tfinish passes.

*/
6 else t.setPriority(t.getPriority

+(P (t fails|tfinish passes)− 0.5)) ;
7 /* Only reprioritize tests with

past co-fails. No priority
update to new added tests */

8 end

CODYNAQSINGLE: Our first enhancement is the single
queue test re-prioritization scheme, called CODYNAQSIN-
GLE, which executes tests concurrently and reprioritizes
tests based on their past co-failure distribution. Initially,
tests that are added to the queue are simply based on their
request time. Then the tests are reprioritized according to the
newly generated information and their co-failure history. The
pseudo code of CODYNAQSINGLE is shown in Algorithm 2.
CODYNAQSINGLE operates on the dispatchQueue which is
a priority queue of tests that are waiting to run. We assume



Table II: Summary of Re-prioritization Algorithm Features

Technique Prioritization Concurrent Number Re-prioritization Starvation Control
Scheme Request of Queues

Execution
FIFOBASELINE Arrival time FIFO No 1 No No

GOOGLETCP recent failed test
distribution Yes 2 No

Yes, when the elapsed
time matches the
prioritize window

CODYNAQSINGLE
Past co-failure

distribution Yes 1 Yes, after each test run No

CODYNAQDOUBLE
Past co-failure

distribution Yes 2 Yes, after each test run Yes, after the the
dispatch queue is empty

CODYNAQFLEXI
Past co-failure

distribution Yes 2 Yes, after each test run
Yes, after the size of the

dispatch queue is
below a threshold

that the dispatchQueue is smaller than the waitingQueue,
which is the most likely practical scenario. We also assume
that two important functions are already implemented in
the test infrastructure: getF inishTests() listen on the test
executors and returns an array of recently finished tests;
getOtherTests(tfinish, dispatchQueue): a function takes
a finished test as its argument and returns the other tests
that are in the same test request and waiting for execution.
Given m the total of test executors and n the largest
number of tests that would be included in a test request,
getF inishTests() is O(m) and getOtherTests() is O(n).
Hence CODYNAQSINGLE is O(mn).

Algorithm 2: CODYNAQSINGLE ()
Result: reprioritize the relative tests in the dispatch

queue
1 initialization;
2 while TRUE do
3 finishTests← getF inishTests();
4 for tfinish ∈ finishTest do
5 otherTests←

getOtherTests(tfinish, dispatchQueue);
6 for t ∈ otherTests do
7 rePrioritize(t, tfinish);
8 end
9 end

10 end

During the simulation on the CHROME and Google data,
we found that in some cases tests face the starvation problem
in CODYNAQSINGLE. Some tests are highly unlikely to
fail, these tests are assigned a low priority and since new
tests request constantly arrive, these low failure probability
tests will never be run. In essence, tests that have a higher
priority are always jumping the line and being executed, while
tests that have a low priority are being ‘starved’ and being
constantly pushed to the back of the queue. This would not
be a problem if these low priority tests never fail. However,
in cases where they do actually fail, then this behaviour is

undesirable since the developer requesting the test would not
have any feedback for a long time. Therefore we develop
our second algorithm, the CODYNAQDOUBLE.
CODYNAQDOUBLE: To address the aforementioned starva-
tion problem, we propose another prioritization algorithm
called CODYNAQDOUBLE. In CODYNAQDOUBLE, we limit
the capacity of the dispatch queue and add another FIFO
waiting queue to temporally store the newly arriving test
requests.

When new tests are requested, they are stored in the waiting
queue. After the dispatch queue is cleared, we fill it with
tests in the head of the waiting queue. Then we execute test
request concurrently and reprioritize tests in the dispatch
queue the same way as in CODYNAQSINGLE. The pseudo
code of CODYNAQDOUBLE is shown in Algorithm 3. In
contrast with CODYNAQSINGLE, the dispatchQueue is a
priority queue with predefined capacity of tests that are
prioritized and waiting to run. CODYNAQDOUBLE uses
the waitingQueue, a FIFO queue of tests, to hold the
requested tests before they are added to the dispatchQueue
for prioritization. In line 3 to 6, when CODYNAQDOUBLE
finds that the dispatchQueue is cleared, it pulls tests from
the waitingQueue and adds them to the dispatchQueue.
Once a test is finished, the reprioritize algorithm is the same
as CODYNAQSINGLE. Hence CODYNAQDOUBLE is O(mn)
as well.

The approach that controls the size of the prioritized
dispatch queue is very similar to the prioritization window
checking approach in Elbaum et al.’s GOOGLETCP [7]. The
main difference however, is that in our approach when the
dispatch queue is empty, only a few waiting tests will be
added to the dispatch queue based on the dispatch queue
capacity, while in GOOGLETCP, all waiting tests will be
added to the dispatch queue and prioritized. Although our
proposed algorithm helps reduced the starved tests in our
simulation, the improvement is not substantial. Therefore we
develop our third model that we describe next.
CODYNAQFLEXI: While CODYNAQDOUBLE reduces test
starvation, we found that many tests still experience substan-
tial delays. In order to minimize the number of delayed test ex-



Algorithm 3: CODYNAQDOUBLE ()
Result: reprioritize the relative tests in the

dispatchQueue; Fill the dispatchQueue with
tests from the waitingQueue when the
dispatchQueue is cleared

1 initialization;
2 while TRUE do
3 if dispatchQueue is empty then
4 while dispatchQueue is not full ∧

waitingQueue is not empty do
5 dispatchQueue.insert(waitingQueue.poll())
6 end
7 end
8 finishTests← getF inishTests();
9 for tfinish ∈ finishTest do

10 otherTests← getOtherTests();
11 for t ∈ otherTests do
12 rePrioritize(t, tfinish);
13 end
14 end
15 end

ecutions, we add a prioritization window to CODYNAQDOU-
BLE and develop CODYNAQFLEXI. In CODYNAQFLEXI,
if the size of the dispatch queue is less than the prioritize
window which is the product of a predefined threshold times
the dispatch queue capacity in our implementation, the tests
in the head of the waiting queue will be prioritized randomly
and added to the dispatch queue until the dispatch queue
is full. The prioritize window is the size at which we add
waiting tests to the dispatch queue. This allows us to add
tests to the dispatch queue and achieve a tradeoff between
starving (low priority) tests and getting higher gain for highly
risky tests, with high priority. Once a test is finished, all
other tests that are in the same request and waiting in the
waiting queue or dispatch queue, are reprioritized in the same
way as in the previous two algorithms. Algorithm 4 displays
the steps of CODYNAQFLEXI. The only difference between
CODYNAQFLEXI and CODYNAQDOUBLE is the condition
on which to trigger the filling of the dispatchQueue. In line
3 of Algorithm 4, when the number of prioritized tests in the
dispatch queue is less or equal to the product of the prioritize
window p and dispatch queue capacity c, CODYNAQFLEXI
fills the dispatchQueue with tests from the waitingQueue.
The time complexity of CODYNAQFLEXI is the same as
that of CODYNAQDOUBLE.

Figures 3, 4, and 5 illustrate the main differences between
the three algorithms. Table II summarizes the different
features of the prioritization algorithms.

Algorithm 4: CODYNAQFLEXI ()
input : p: the prioritize window ranges between 0 to 1
Result: reprioritize the relative tests in the dispatch

queue; Fill the dispatchQueue with tests from
the waitingQueue when the size of
dispatchQueue is smaller than p ∗ c

1 initialization;
2 while TRUE do
3 if dispatchQueue.size ≤

p ∗ dispatchQueue.capacity then
4 while dispatchQueue is not full ∧

waitingQueue is not empty do
5 dispatchQueue.insert(waitingQueue.poll())
6 end
7 end
8 finishTests← getF inishTests();
9 for tfinish ∈ finishTest do

10 otherTests← getOtherTests();
11 for t ∈ otherTests do
12 rePrioritize(t, tfinish);
13 end
14 end
15 end

C. Performance Evaluation Measures

To measure the performance of our prioritization algo-
rithms, we use three measures 1) time to the first failure
(FIRSTFAIL), 2) time to detect all failures in a test suite
(ALLFAIL) and the percentage of delayed failure tests. We
detail each measure below:
Speedup in the First Failure Detection (FIRSTFAIL).
When developers submit a change to be tested the first
feedback they can respond to is a failing test or, if there are
no failures, the time to pass all the tests. We refer to this
measure as the First Failure Detection Time (FIRSTFAIL).
We measure FIRSTFAIL in testing time saved. This measure
is very similar to the measure Response Time in system
programming which is used to evaluate how fast a shared
system reacts to the user [12].

For a given test request, Gain in FIRSTFAIL is calculated as
taking the difference between the FIRSTFAIL of the baseline
algorithm and that of the algorithm under evaluation. Then
Speedup in FIRSTFAIL is calculated by Equation 3:

speedup =
median gain

median waiting time
(3)

If speedup in FIRSTFAIL is positive, then the evaluated
algorithm provides result for a single change earlier than the
FIFOBASELINE algorithm and vice versa.
Speedup in All Failure Detection (ALLFAIL). For a given
failing suite (which includes many tests), ALLFAIL is the
waiting time for a test failure to be reported for the entire



Figure 3: CODYNAQSINGLE

test suite. In our case, we use the period as an indicator of
a test suite. Using ALLFAIL gives us a different perspective
from FIRSTFAIL, since FIRSTFAIL is about how quickly we
get results for a single change, whereas ALLFAIL gives us
an indication of how fast we get feedback for all test failures.
In many ways, these two measures complement each other.
FIRSTFAIL tells us how quickly the prioritization is able to
provide feedback for a change, whereas ALLFAIL tells us
how well the prioritization can handle the starvation problem,
since it considers all test failures.

The gain in ALLFAIL is calculated as the difference
between the time it takes for all failures to be found in
the tests suite using the baseline algorithm and the evaluated
algorithm. And the speedup in ALLFAIL is given by Equation
3. If speedup in ALLFAIL is positive, then the evaluated
algorithm fails the given tests earlier than the FIFOBASELINE
algorithm and vice versa.
Percentage of Delayed Failure Detection. Another view of
how well an algorithm copes with starvation is to measure
the difference in delayed test failures compared to the
FIFOBASELINE. The main difference between percentage of
delayed failure detection and ALLFAIL lies in the fact that
ALLFAIL measures the relative amount of time gain, while
percentage of delayed failure detection does not consider the
amount of delay but just the percentage of delayed failures.
For example, if many failures were delayed by a negligible
amount ALLFAIL would still report good results, whereas
percentage of delayed failure detection would not. Since this
measure is related to delayed failure detection, the smaller
the value the better.

V. CO-FAILING BEHAVIOUR OF CHROME TESTS

Prior to delving into our results, we wanted to examine
the co-failing behaviour of tests in CHROME. Generally,
test prioritization work assumes that tests are independent
from each other [6]. However, we believe that tests are not
independent, in particular for system level testing [22][3].
Some tests may cover different functionality located in the
same file collection, while other tests may cover different
files where a high degree of file dependency is found. These

Figure 4: CODYNAQDOUBLE

Figure 5: CODYNAQFLEXI

tests tend to fail together and result in co-failing behavior.
In both cases, the basis of the co-failing behavior comes
from the inherent interrelation inside the file system, which
is not likely to change. Hence, we believe that the co-failing
behavior is a long term phenomenon.

We used the machine learning library, Apache Spark, to
capture the frequently co-failing test suites in the CHROME’s
test data and generate Table III. The column Test Pair is the
pair of tests under investigation, the column Fail Together is
the number of times they all failed in the same request, the
column Run Together is the number of times the given test
pair were executed in the same request, the column Period is
the investigated period. For performance reasons, we used the
FP-Growth algorithm which is described by Han et al. [8].

Table III shows that some groups of test suites failed
together frequently in both periods 1 and 2. For example, the
test pair mac_rel and win_rel, were run together 36,344
times and failed together 6,133 times in period 1 while
they were run together 31,501 times and failed together
4,375 times in period 2. The conditional probability that,
given mac_rel fails, win_rel also fails is 74% in



period 1 and 78% in period 2. This observation illustrates
our proposition about the co-failing behaviour of tests.

This co-failing behaviour justifies our motivation that, re-
prioritizing tests can be beneficial since it can delay tests that
are more likely to co-fail and give higher priority to tests that
have low co-failure probability (i.e., have tests that are most
different from the failing tests run first). This prioritization
calculation is performed after (and based on the outcome of)
each test run, so that we can always update how likely the
remaining tests will fail and keep the ordering of tests as
accurate as possible.

VI. CASE STUDY RESULTS

In this section, we perform simulations to evaluate the
performance of each algorithm. We perform our case study
using the GOOGLETCP algorithm and our three proposed al-
gorithms namely - CODYNAQSINGLE, CODYNAQDOUBLE
and CODYNAQFLEXI. We compare the algorithms using both
data sets, CHROME and internal Google data. In particular,
we compare the algorithms in terms of the speedup for
FIRSTFAIL, ALLFAIL and the percentage of delayed test
failures. Table IV shows the speedup for FIRSTFAIL and
ALLFAIL and the percentage of delay test failures.
FIRSTFAIL: Table IV shows the median speedup for each
algorithm over the FIFOBASELINE. The best performing
algorithm is highlighted in bold. In terms of FIRSTFAIL we
see that CODYNAQSINGLE provides the greatest speedup for
CHROME of 11.33%, and CODYNAQSINGLE also provides
the greatest speedup for Google of 31.01%. In contrast, the
GOOGLETCP a speedup for CHROME is only 3.34% over
the baseline and the speedup for Google of 4.36%.
ALLFAIL: From Table IV when a developer wants to
find all failures, ALLFAIL, CODYNAQSINGLE performs
best for the CHROME data set, achieving a speedup of
61.84%, for the Google data set, CODYNAQSINGLE also
performs best, achieving a speedup of 39.6%. The speedup
for GOOGLETCP is 0.04% for CHROME and 4.61% for
Google, making CODYNAQSINGLE is 61.8% and 33.19%
faster than GOOGLETCP.
Percentage of Delayed Test Failures: In terms of test
starvation, i.e. delay, Table IV shows that the shortest delay
for CHROME is achieved by CODYNAQFLEXI, with less
than 1% of the test failures being delayed. For Google,
CODYNAQFLEXI again achieves the shortest delay with
6.20% of test being delayed compared to the baseline. While
GOOGLETCP delays 31.78% of test failures in CHROME
and 8.22% in Google.
Best overall algorithm: All evaluated algorithm provides
positive speedup in FIRSTFAIL and ALLFAIL. CODYNAQS-
INGLE drastically outperforms the other algorithms in terms
of speedup. Especially, it achieves a very significant speedup
in ALLFAIL for CHROME. However, there is starvation
revealed by the percentage of delayed failures. With CO-
DYNAQDOUBLE we control starvation by setting a longest

waiting time for the tests in the dispatch queue. We only
add new tests after all tests in the dispatch queue have
been run. The longest waiting time for a test already in
the dispatch queue would be the total execution time of all
the other tests in the dispatch queue. CODYNAQDOUBLE
does only slightly reduces the portion of delayed test failures.
Therefore, we proposed CODYNAQFLEXI, The problem with
CODYNAQDOUBLE is that even a test in the waiting queue
with a high priority through reprioritization will still have to
wait for the tests that are already added to the dispatch queue.
While in CODYNAQFLEXI, high priority tests have the the
chance to jump in the line without waiting for all the tests
that are added in the dispatch queue earlier. CODYNAQFLEXI
offers the lowest percentage of delayed test failures.

Overall, we see that GOOGLETCP does not perform well
for all three performance measures on the CHROME data.
The ordering provided by GOOGLETCP did not produce a
substantial speed up over the simple FIFOBASELINE. How-
ever, the performance of GOOGLETCP for all performance
measures is close to our best approach for the Google data
sets. Hence, next we examine the characteristics of the
different data sets in order to better understand the variance
in performance.

VII. DISCUSSION

As discussed in section VI, GOOGLETCP only performs
well on the Google data set. While CODYNAQSINGLE always
offers the best speedup and CODYNAQFLEXI provides the
lowest percentage of delay test failures with an accurate
ordering of tests for both, the Google and CHROME, data
sets. In this section, we analyze the distribution of the test
failures and present measures, related to continuous testing,
to better understand the performance of our findings. In
addition to better understanding our results, our goal is to
examine the underlying test failure distribution to influence
our decision on the best prioritization strategy for a particular
continuous testing environment.

We use three measures to examine the data: test execution
failure rates, kurtosis of failure distributions and co-failures.
Execution Failure Rate measures the overall failure rate of
tests in the data set. Particularly, we calculate the Failure
Rate as the fraction of the number of failed test executions
over the total number of test executions.
Kurtosis of Failure Distributions examines which tests
tend to fail. In particular, kurtosis measures how skewed
the test failures are. If test failures are distributed evenly
throughout the set of tests, then the failure distribution will
have a low KURTOSIS. If on the other hand, the test failures
are concentrated on a small set of tests, then the failure
distribution will have a high KURTOSIS. We use the kurtosis
coefficient to measure the kurtosis of the test distribution [4].

Proportion of Test Co-Failures (or Cohesion): We use
two measures of cohesion: (1) the portion of tests that the co-
fail in a period of time and (2) the co-failure rate of the tests



Table III: Frequent Co-failing Test Suites at Periods 1 and 2

Test Pair Fail together Run Together Period
mac rel,win rel 6,133 36,344 1
mac rel,win rel 4,375 31,501 2
linux CHROMEos,win rel 6,113 35,599 1
linux CHROMEos, win rel 4,918 30,605 2
linux rel,win rel 5,902 36,366 1
linux rel,win rel 4,087 31,392 2
linux aura,linux CHROMEos 5,259 34,942 1
linux aura,linux CHROMEos 4,121 25,608 2
linux rel,mac rel 5,237 37,010 1
linux rel,mac rel 3,515 31,492 2
linux rel,linux CHROMEos 5,209 35,639 1
linux rel,linux CHROMEos 3,648 30,585 2
linux aura,win rel 5,082 34,794 1
linux aura,win rel 3,874 25,549 2

Table IV: Median of Gain of FIRSTFAIL, ALLFAIL and Percentage of Delayed Failures Compared to the FIFOBASELINE

CHROME CODYNAQSINGLE CODYNAQDOUBLE CODYNAQFLEXI GOOGLETCP
FIRSTFAIL 11.33% 0.84% 5.01% 3.34%
ALLFAIL 61.84% 0.05% 0.08% 0.04%

Delayed Failures 19.11% 17.34% 0.51% 31.78%
Google

FIRSTFAIL 31.01% 0.04% 0.18% 4.36%
ALLFAIL 39.60% 0.09% 0.20% 4.61%

Delayed Failures 31.14% 27.26% 6.20% 8.22%

Table V: Failure Rate of Data sets

Data set Failure Rate Kurtosis
CHROME 12.53 % 22.90
Google 0.29% 3228.51

Table VI: Proportion of Test Co-Failures

Over All Tests Over Failed Tests
CHROME 58.21% 64.86%
Google 0.90% 43.10%

in the next period. The first measures the short-term cohesion
of the tests. The second, measures the degree to which the
current period can be used to predict the subsequent period.

A. Test Failure Rates

We measure the failure rate of tests in the two data sets and
present them in Table V. We observe that the Google data
set has a very low failure rate. In fact, upon closer analysis,
four tests were responsible for 51.3% of the failures in the
data set, and the one test is responsible for 28.4% of the
failures. In effect we can these four tests tests to find 50% of
all failures in Elbaum et al. [7] Google data set. In contrast,
the CHROME data set has more evenly distributed failure rate,
where 89.73% of the tests have failed at least once. Google’s
highly skewed data set artificially inflates the effectiveness
of GOOGLETCP and we find that on the CHROME data set
it performs much less well than CODYNAQ.

B. Kurtosis of Failure Distributions

In addition to examining the failure rate, we also investigate
the kurtosis of the test failure distributions. Table V shows
the kurtosis values of the two datasets. We observe that the
Google data set has a very large kurtosis value, indicating
that the majority of the failures are concentrated in a few tests.
Since the GOOGLETCP algorithm is designed to prioritize
tests that recently fail over tests that never fail or have
not failed in a long time, it performs well on such highly-
concentrated data sets. That said, we see that CODYNAQ
performs well in both data sets, even in the Google data set,
which is promising.

C. Proportion of Test Co-Failures (a.k.a Cohesion)

Since CODYNAQ mainly relies on co-failure history to
predict the failure rate, we suspect that the cohesion of test co-
failures would have an important impact on its performance.
Hence, we examine the test cohesion in order to better
understand when to select the most appropriate algorithm.
Table VI shows the co-failure proportions for all tests and
failed tests. We see that in the Google data set, the proportion
of co-failures (all tests) is low. Since only 2.78% of tests in
the Google data set fail, when we examine co-failure among
test that have failed at least once, we see a high proportion
of test co-failures, 43.1% . On the other hand, CHROME has
a high proportion of test co-failures in both, all tests and
failed tests.

Triangulating our findings from Table VI and Table IV
we can see that when the proportion of test co-failures
is low over all tests (e.g., Google), either GOOGLETCP,



CODYNAQSINGLE or CODYNAQFLEXI are good choices
for prioritization algorithms. However, if the tests that fail
are evenly distributed or the co-failures rate is high (e.g.,
CHROME), then the CODYNAQSINGLE or CODYNAQFLEXI
is superior.

VIII. THREAT TO VALIDITY

Internal Validity: Internal validity examines the factors that
could have influenced our results. To obtain the test execution
information for CHROME, we mine publicly available test run
data. Although we obtained over 4.4 million executions, some
results are only viewable by internal to Chrome developers.

We fix the size of the dispatch queue to 60 per machine
when performing our experiments. Although varying the size
of the dispatch queue may impact the results, since our goal
is the comparison of the different prioritization techniques,
the key point is to ensure that the queue sizes are the same
when evaluating the different prioritization techniques. Hence,
we believe that as long as the sizes are the same for the
different experiments, there is no impact on our findings.
Construct Validity: Threats to constructed validity concern

the relationship between theory and observation. We use
three metrics, FIRSTFAIL, ALLFAIL and delayed failures to
evaluate the performance of our approach and compare it to
the GOOGLETCP and FIFOBASELINE approaches. We chose
these metrics because they have been used in the evaluation
of prior works. However, these are not the only measures
that can be used to evaluate test re-prioritization algorithms
and different measures may yield to different results.

Test are considered to be co-failing if they fail together.
However, we do not necessarily determine if these tests co-
failed due to the same failure. That said, we believe that
tests that co-fail together, even if due to different failures,
are interesting since this co-failure may point to a hidden or
indirect interaction between the tests, which clearly leads to
a co-failure occurring.
External Validity: Threats to external validity concern the

generalization of our findings. We study the internal testing
results from Google and the open source project Chrome.
Chrome is lead by Google and many of its developers are
Google employees. Our results may not generalize to other
companies or projects. As discussed earlier, the test failure
rate distributions play a major role in the performance of
the different re-prioritization algorithms, hence, our results
may not generalize to other projects that have different test
re-prioritization failure distributions.

IX. CONCLUSION AND FUTURE WORK

As continuous integration becomes more popular, the
need for continuous testing is also growing. However, given
the large number of software changes being continuously
integrated everyday, delays may occur. Effective test prioriti-
zation is a requirement to reducing the continuous integration
cycle time. In this paper, we present test re-prioritization

algorithms that take into account test co-failures, namely
CODYNAQ. We compare the proposed algorithms to the
FIFOBASELINE approach and the state-of-the-art approach,
GOOGLETCP. We evaluate our approach using three metrics,
FIRSTFAIL, ALLFAIL and the percentage of delayed failures.
We show that our approach significantly outperforms both,
the FIFOBASELINE and the GOOGLETCP approaches for
CHROME by over 61%. The GOOGLETCP approach is
ineffective on CHROME data. GOOGLETCP was designed
for the Google data set, however, CODYNAQ outperforms
GOOGLETCP by 33.19% on this data set. We note that
the Google data set from [7] is highly skewed with only
2.78% of the test ever failing, which artificially increasing the
effectiveness of GOOGLETCP which simply runs recently
failed tests first.

In the future, we plan to evaluate the approach on other
projects and to continue to examine the underlying failure
distributions to further improve test prioritization. Moreover,
we plan to explore the use of other prioritization techniques,
such as test coverage-based prioritization.

REFERENCES

[1] K. Beck. Extreme programming explained: embrace change.
addison-wesley professional, 2000.

[2] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling
of real-time tasks under precedence constraints. Real-Time
Systems, 2(3):181–194, 1990.

[3] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn. Constructing test suites for interaction testing. In
Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 38–48. IEEE, 2003.

[4] L. T. DeCarlo. On the meaning and use of kurtosis.
Psychological methods, 2(3):292, 1997.

[5] P. M. Duvall, S. Matyas, and A. Glover. Continuous
integration: improving software quality and reducing risk.
Pearson Education, 2007.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies. Software
Engineering, IEEE Transactions on, 28(2):159–182, 2002.

[7] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improv-
ing regression testing in continuous integration development
environments. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering, FSE 2014, pages 235–245, New York, NY, USA,
2014. ACM.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD Record, volume 29,
pages 1–12. ACM, 2000.

[9] B. Jiang, Z. Zhang, T. Tse, and T. Y. Chen. How well
do test case prioritization techniques support statistical fault
localization. In 2009 33rd Annual IEEE International
Computer Software and Applications Conference, volume 1,
pages 99–106. IEEE, 2009.



[10] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-
redundant mutation operators and test suite prioritization to
achieve efficient and scalable mutation analysis. In Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International
Symposium on, pages 11–20. IEEE, 2012.

[11] J.-M. Kim and A. Porter. A history-based test prioritiza-
tion technique for regression testing in resource constrained
environments. In Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on, pages
119–129. IEEE, 2002.

[12] L. Kleinrock. Queueing systems, volume 2: Computer
applications, volume 66. wiley New York, 1976.

[13] N. Kukreja, W. G. Halfond, and M. Tambe. Randomizing
regression tests using game theory. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, pages 616–621. IEEE, 2013.

[14] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization
for continuous regression testing: An industrial case study. In
2013 IEEE International Conference on Software Maintenance,
pages 540–543. IEEE, 2013.

[15] C. Nguyen, P. Tonella, T. Vos, N. Condori, B. Mendelson,
D. Citron, and O. Shehory. Test prioritization based on change
sensitivity: an industrial case study, 2014.

[16] C. D. Nguyen, A. Marchetto, and P. Tonella. Change
sensitivity based prioritization for audit testing of webservice
compositions. In Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011 IEEE Fourth International
Conference on, pages 357–365. IEEE, 2011.

[17] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia.
Improving multi-objective test case selection by injecting
diversity in genetic algorithms. IEEE Transactions on Software
Engineering, 41(4):358–383, 2015.

[18] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-
aware regression testing: an empirical study of sampling
and prioritization. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 75–86.
ACM, 2008.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Software Main-
tenance, 1999.(ICSM’99) Proceedings. IEEE International
Conference on, pages 179–188. IEEE, 1999.

[20] D. Saff and M. D. Ernst. An experimental evaluation of
continuous testing during development. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages 76–85. ACM,
2004.

[21] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An
information retrieval approach for regression test prioritization
based on program changes. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on,
volume 1, pages 268–279. IEEE, 2015.

[22] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D.
Ernst, and D. Notkin. Empirically revisiting the test indepen-
dence assumption. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014,
pages 385–396, New York, NY, USA, 2014. ACM.


