
Verification of the Correctness in Composed UML
Behavioural Diagrams

S. Ouchani1 and O. Ait Mohamed1 and M. Debbabi1 and M. Pourzandi2

1Computer Security Laboratory, Concordia University, Montreal, Canada
2Software Research, Ericsson Canada, Town of Mount-Royal, Canada

Abstract— The Unified Modeling Language
UML 2.0 plays a central role in modern software en-
gineering, and it is considered as the de facto stan-
dard for modeling software architectures and de-
signs. Todays systems are becoming more and more
complex, and very difficult to deal with. The main
difficulty arises from the different ways in modelling
each component and the way they interact with each
others. At this level of software modeling, providing
methods and tools that allow early detection of errors
is mandatory.

In this paper, a verification methodology of a com-
position of UML behavioural diagrams (State Ma-
chine, Activity Diagram, and Sequence Diagram) is
proposed. Our main contribution is the systematic
construction of a semantic model based on a novel
composition operator. This operator provides an ele-
gant way to define the combination of different kind
of UML diagrams. In addition, this operator posses a
nice property which allows to handle the verification
of large system efficiently. To demonstrate the effec-
tiveness of our approach, a case study is presented.

Keywords: Transition System, Unified Modelling
Language (UML),Model Checking, Security Properties.

I. I NTRODUCTION

A major challenge in the software development pro-
cess is to advance error detection to early phases of
the software life-cycle. For this purpose, the verifica-
tion of UML diagrams plays an important role in detect-
ing flaws at the design level. It has a distinct impor-
tance for software security, since it is crucial to detect
security flaws before they have been exploited. From
the literature, a lot of techniques have been proposed
for verification of softwares as well as hardwares like:
Model Checking, Theorem Proving, and Static Analy-
sis, etc. The most of the techniques used for verification
of UML diagrams is model checking. Model checking
is an important technology of automatic verification. It
verifies the properties against a model through explicit
state exploration, and elegantly presents the counter ex-
ample paths when the system does not satisfy a prop-
erty. The most important researches focusing on model
checking of UML models verify the properties specified

by a formal language after extracting the semantic model
of UML design, and then they translate it into the input
languages of the existing model checkers.

Most of the approaches proposed in the literature are
intended either to activity, state machine [1, 3, 5, 6, 8,
9, 12, 14], or sequence diagrams [1, 13] separatly. We
experience in industrial collaborations, that in practice
most UML behavioural diagrams are mixed and con-
nected. Effectively, in the literature there is a poor prior
approachs that proposes a solution for this case when
UML behavioural diagrams interacts.

The main intent of our work is to focus on the verifi-
cation of UML design models containing different con-
nected UML behavioral models. We will focus on se-
curity properties like authentication. For that we have
chosen the model checking technique because it’s au-
tomatic, and characterized by features like model re-
duction. To construct the semantic model of different
UML behavioural diagrams, we defined a new compo-
sitional operator to fully automate the semantic model
generation of the interacted UML models. The secu-
rity properties are specified by a simple instantiation
from security templates describing a set of application-
independent properties to produce a set of application-
dependent properties proper to the application[5].

As a case study, we apply the proposed technique to
verify the message authentication security property on
Automated Teller Machine (ATM). ATM is written as
an UML-based model composed of two different UML
behavioural diagrams:a state machine describing client
authentication and an activity diagram describing trans-
action operation. The ATM security properties were ob-
tained from the authentication templates, and formalized
by the formal language : the Computational Tree Logic
(CTL)[2]. The result of this case study shows how to
verify a complex system described by a mixed UML be-
havioural diagram.

The remainder of this paper is organized as follows:
Section II.presents the related work. Section III.explores
UML behavioral diagrams (BDs) and their possible in-
teractions inside a UML design. We define and generate
the semantic model for the global UML design in the
form of transition system in Section IV.. The proposed
verification approach is detailed in Section V.. In Section

VI., we provide a ATM case study. Finally, we conclude
the paper by a conclusion and a promising future work
in Section VII..

II. RELATED WORK

In the state of the art, there is a considerable number of
researches which are intended to verify just one kind of
UML behavioural bediagrams like a state machine or a
sequence diagram without taking in consideration their
interactions when a state machine call an activity dia-
gram for example.

Cheng et al. [5] investigate how the verification of se-
curity properties can be enabled by adding formal con-
straints to UML-based security patterns. From the pro-
posed templates, they instantiate the security properties
to enable their analysis by using the Spin model checker.
The limit of their work is in how to tailor a security pat-
tern to meet the needs of a system especially when it
contains a set of connected diagrams.

A Static Verification Framework (SVF) is developped
in [14] to support the design and verification of secure
peer-to-peer applications. The framework supports the
specification, modeling, and analysis of security proper-
ties together with the behavior of the system. The SVF
developped in [12] is the continuation work of Andrea
[14], they translate the UML state machine including
guards into Promela models that are amenable for Spin
model checking with LTL properties. Their works are
limited to only the state machine diagram that describe a
peer-to-peer applications, also their properties represents
just a proposed scenarios for the attacker.

Beato et al. [3] developed a complete automatic tool
called TABU to transform active and state machine dia-
grams into an SMV (Symbolic Model Verifier) specifi-
cation via Labeled Transition Systems (LTS). The prop-
erties are specified by the pattern classification proposed
by Dwyer et al [7]. In their work, they didn’t consider
when a state machines are composed with activity dia-
grams.

Eshuis et al. describe in [8] a tool that verify UML ac-
tivity diagrams by specifying the activity diagrams as a
Clocked Transition Systems then generate automatically
the NuSMV input code. The limits of their approach re-
sides when they ignore the verification of some cases by
stopping the computation of the transition system if one
of the nodes becomes unbounded, and more than that,
they focuse only on activity diagram.

Giese et al. provide in [9] a domain specific formal
semantic definition to verify a real-time UML design
and an integrated sequence of design steps by prescrib-
ing how to compose complex software systems from
domain-specific patterns. The composition of these pat-
terns to describe the complete component behaviour is
prescribed by a syntactic definition which guarantees the
verification of components and system behaviour can ex-

ploit the results of the verification of individual patterns.
Amstel et al.[13] propose trace analysis techniques by
using model checkers to improve the quality of sequence
diagrams, and to get PROMELA code from sequence di-
agrams. This technique provides a translation scheme
that is defined in [11]. These works are limited to just
one kind of real-time diagram as well as sequence dia-
gram.

Dong et al. in [6], define a set of rules to verify UML
Dynamic Models. These rules are based on hierarchi-
cal automata between semantics structures, and simu-
lation relation to reduce the detailed components to an
abstracted specifications. In their work, they gave the
results without linking their simple case study to the the-
ory proposed. More than that, they didn’t mention the
effect of the simulation relation in a model which is the
main step in verification.

In [1], a framework has been proposed for verify-
ing UML diagrams, the extracted semantics model is
called Configuration Transition System (CTS), a kind of
Transition System. The resulting CTS is translated into
NuSMV [10] code. This approach allows verfication be-
havioral against properties written in CTL, and our work
is the continuation of [1].

The verification in [1, 3, 5, 6, 8, 9, 12, 13, 14] is done
by using different semantic models, and using different
checking techniques. None of them addressed the prob-
lem of linking several UML Behavioural Diagrams.

III. SYNTAX OF UML B EHAVIORAL DIAGRAMS

UML supports behavioral modeling, but more than that
it supports the interaction between behavioral models.
Figure 1 shows the different UML behavioral models. In
this section, we explore all the possible interactions be-
tween UML behavioral diagrams to complete the systax
defined in [1].

A. State Machines (SM)

In UML, we have two kinds of State Machines (SM):
behavioral state machinesandprotocol state machines.
The role of these two diagrams is to express the behav-
ior of the system, and the usage protocol of part of that
system, respectively. A SM can have association with a
BD in its state as in its transition:

• State: It models a situation where some invariant
condition holds. A state can have one association
with a BD in three places:

1. doActivity, a BD is executed while being in
the state. The execution starts when this state
is entered, and stops either by itself or when
the state is exited whichever comes first.

2. Entry, a BD is executed whenever the state
is entered regardless of the transition taken
to reach the state. If defined, entry actions

Figure 1: all the possible interactions between UML be-
havioral diagrams.

are always executed to completion prior to
any internal behavior or transitions performed
within the state.

3. Exit, a BD is executed whenever this state
is exited regardless of which transition was
taken out of the state. If defined, exit actions
are always executed to completion only af-
ter all internal activities and transition actions
have completed execution.

• Transition: It is a directed relationship between a
source vertex and a target vertex in a state machine.
During the activation of this transition, the behav-
ioral diagram specified in association withEffect
can be executed.

B. Activity Diagram (AD)

An activity diagram includes concurrent control, data
flow, and decisions. It supports structured activities (se-
quences, loops, and conditions), but it can have just one
association with another behavior at time for each of the
following activity elements:

• DecisionNode: It is a control node that chooses be-
tween outgoing flows. It has an association inde-
cisionInputto provide input to guard specifications
on edges outgoing from the decision node.

• ObjectFlow: It is an activity edge to model the flow
of values to/or from object nodes that can have ob-
jects or data passing along them. It can have two
associations with a BD inSelectionobject to select
tokens from a source object node, and inTransfor-
mationobject to change or replace data tokens flow-
ing along edge.

• ObjectNode: It’s an abstract activity node that con-
tains only values at runtime that conform to the type
of the object node. It has an association with a BD
in Selectionto select tokens for outgoing edges.

C. Interaction Diagram(ID)

Interactions are a mechanism for describing systems
that can be understood and produced by providing dif-
ferent capabilities that makes it more appropriate for
certain situations (i.e, Sequence Diagrams, Interaction
Overview Diagrams, Communication Diagrams, Timing
Diagrams and Interaction Tables). This kind of diagrams
can have association with only one BD at time in aBe-
haviorExecutionSpecificationelement. It is a kind ofEx-
ecutionSpecificationrepresenting the execution of a be-
havior. A BehaviorExecutionSpecificationcan be asso-
ciated with those BD having their execution occurring in
a Behavior element.

For the remainder of this paper we noteSelmt as the
set of elements where the BDs can be connected.

IV. SEMANTIC OF UML B EHAVIORAL DIAGRAMS

A. Configuration Transition System

A Configuration Transition System (CTS)[1] is a formal
description of the behavior of a system. A CTS is con-
sidered as a directed graph where nodes representcon-
figurations, and edges modeltransitions. A Configura-
tion is a specific binding of a set of values to the set of
variables in the dynamic domain of the behavior of a sys-
tem. i.e, the set of value assigned to the variables of the
system during one step of execution (e.g., the evaluation
of variables in an iteration of a program). ATransition
specifies how the system can change from one config-
uration to another i.e, the relation between the current
configuration and next ones. Definition 1 [1] gives the
formal definition of a CTS.

Definition 1 (Configuration Transition System). A
Configuration Transition System CTS is a tuple
(C, Act,→, I, E) where:

• C is a set of configurations,
• Act is a set of actions,
• →⊆ C × Act × C is a transition relation,
• I is the initial state,
• E is the final state.

Large systems are built from smaller parts, so we have
to reason about their components, and how they inter-
acts. Semantically, a componentΠi of a system is rep-
resented byCTSi and the parallel composition of the
systemΠ1 ‖ . . . ‖ Πn is represented by the composi-
tion of CTSs componentsCTS1 ◦ . . . ◦ CTSn. In our
case, the composition is defined as a simple substitution
(Definition 2), we substitute the transition relation that
represents an element ofSelmt (called interface) by its
corresponding CTS.

Definition 2 (Composition of CTS). Let
CTSi, and CTSj be two CTS where
CTSi = (Ci, Acti,→i, Ii, Ei), and CTSj =
(Cj , Actj ,→j , Ij , Ej). The composition
(CTSi ◦ CTSj) of CTSi, andCTSj is the substitution
of CTSj in the specific transition that represents the
interface→r (ci1, acti, ci2) of CTSi defined by the
tuple: CTS = (S, Act,→, I, E), where:

• C = (Ci ∪ Cj) \{Ij, Ej},
• Act = (Acti ∪ Actj) \{acti},
• → ⊆ (→i ∪ →j) \ →r,
• I = Ii,
• Ij = ci1, Ej = ci2, andE = Ei.

In order to ensure the scalability of the verification
process for systems composed asDefinition 1we have
derivedTheorem 1. The proof is provided in theAp-
pendix.

Theorem 1. The composition of CTS’s is associative,
i.e.: (CTSi◦CTSj)◦CTSk = CTSi◦(CTSj◦CTSk).

More than that, we conclude fromDefinition 2 the
maximum number of possibilties to apply the compo-
sitional operation in the initialCTS1. This maximum
is bounded by the number of interfaces and its up to the
number of transitions (n). Also, we can observe that this
composition is not commutative, and not transitive.

B. Generation of Configuration Transition System

To capture the semantic model of a single BD having
no interaction with other BDs, we have to generate
its proper CTS where each configuration represents
the active elements in that diagram, and the transition
represent the transition from source configuration to
the target configuration. To achieve that, we iterate the
breadth-first search procedure as presented inAlgorithm
1 which is the simplified version of the one presented in
[1]. In each iteration, the new configuration explored
from the current configuration denoted byCurrentConf
and the trace of configurations are saved inFoundCon-
fList list whereCTSTransListlist contains the transitions
between configurations. The unexplored configurations
are inCTSConfListlist, andEventListlists the possible
incoming events. Initially, still they are a discovered
configurations to explore inFoundConfList, the top
element is loaded intoCurrentConf and add it into
result list of configuration if it’s not added inCTSCon-
fList. Given the current configurationCurrentConf
and the event listEventList, the trace of configuration
FoundConfListis updated. While this trace is not empty
the configuration transition listCTSTransListwill be
updated.

Algorithm 1 : The CTS of a simple diagram
CTS(FoundConfList ,CTSConfList, CTSTransList,
EventList:list)
begin

while FoundConfList IsNotEmptydo
CurrentConf = pop(FoundConfList);
if CurrentConf not inCTSConfList

then
CTSConfList = CTSConfList∪
{CurrentConf};

end
NextTransList=getNext(CurrentConf,EventList);
for nextTrans in NextTransListdo

nextConf = getDestination(nextTrans);
FoundConfList = FoundConfList∪ {
nextConf};

end
CTSTransList = CTSTransList∪
NextTransList;

end
end

To generate the CTS of a UML diagram intercon-
nected with other BDs by association presented in sec-
tion 2, and noted by→r in definition 2 we propose the
recursive algorithmAlgorithm 2derived fromAlgorithm
1. The algorithm calls itself when a transition contains
an interface. However, we avoid to recalculate the CTSs
that have been already generated so far.

V. V ERIFICATION METHODOLOGY

Our contribution is an automatic model checking based
approach as depicted in Figure 2. The approach consists
of two parts: the verification partwhere we construct
the global semantic model of our design model, and the
second one isthe Specification partwhere we express a
set of security properties to be verified for our model.
At the beginning ofthe verification part, we have a set
of separated UML behavioral diagrams, for this reason
we have to extract their corresponding semantic mod-
els (CTS) separately, and based on their interactions in
the global model we construct its corresponding CTS
by constructing the set of the existing interfaces be-
tween the CTSs of the small parts. The formal structure
CTS representing the global system to be verified is a
composition of a small ones:CTS1, . . . , CTSn where
CTS = CTS1 ◦ . . . ◦ CTSn. Our objectif is to check
for a given property (π) if it holds for CTS verifying
CTS |= π (i.e. CTS1 ◦ . . . ◦ CTSn |= π) involves
the exhaustive inspection ofCTS instead of the prop-
erty π. The property we want to verify should be for-
mally specified by a büchi automata, or using a temporal
logic to be able to use model checking. Based onDef-
inition 2,andTheorem1we have derived a corollary to
handle the verification of the complex system having n

Algorithm 2 : The CTS of a composition of dia-
grams
CTS(FoundConfList ,CTSConfList,
CTSTransList,EventList:list, d:diagram)
begin

while FoundConfList IsNotEmptydo
CurrentConf = pop(FoundConfList);
if CurrentConf not inCTSConfList

then
CTSConfList = CTSConfList∪ {
CurrentConf};

end
NextTransList=getNext(CurrentConf,EventList);
for nextTrans in NextTransListdo

if nextT rans HasInterfacethen
if d not computedthen

CTS(FoundConfList,CTSConfList,
CTSTransList,EventList,d);

end
end
nextConf = getDestination(nextTrans)
FoundConfList = FoundConfList∪ {
nextConf};

end
CTSTransList = CTSTransList∪
NextTransList;

end
end

sub-components. The proof ofCorollary 1 is pesented
in theAppendix, and it is based on induction.

Corollary 1. Let CTS = CTS1 ◦ . . . ◦ CTSi ◦ . . . ◦
CTSn be a CTS composed of n-sub-CTS, andπ a prop-
erty, the following expression is always true:
[(CTSi◦. . .◦CTSn) |= π] ⇒ [CTS |= π] (1 ≤ i < n).

FromCorollary 1, we notice that in order to verify a
property we don’t need to construct the whole semantic
model of the system but only a subset. The main advan-
tage of theCorollary 1 is to accelerate and optimize the
verification procedure.

The specification part: Our approach is a model
checking based, so we have chosen to formalize our
security properties by using a temporal language like
(LTL, CTL, CTL*)[4] depending on the model checker
used. For that, we are using a set of security templates
proposed in [5]. Firstly, we extract the application-
independent security properties from a given templates
of security patterns like:Single Access Point, Check
Point, Roles, Session, Full View with Errors, Limited
View, Authorization, Multi-level Security. Secondly, we
instantiate their appropriate application-dependent secu-
rity properties and formalize them using temporal lan-
guage of the adopted model checker such as Computa-

tional Tree Logic (CTL) for NUSMV1 model checker
[10] in our case. From the semantic model defined in
section 1 we generate the appropriate NuSMV code to
be inputs to NuSMV model checker with the CTL ex-
pression of the instantiated security properties.

Security Properties
Templates

Application-
independent

security properties

Application-
dependent security

properties

UML –based

Behavioral
Diagrams

Composition of
UML –based
Behavioral
Diagrams

Composed
Semantic Model

Verification engine

Semantic Models

Figure 2: Compositional Verification Approach.

As an example of this kind of specification, we picked
the template of message authentication presented in Fig-
ure 3 as a UML state machine where a countermeasure is
taken if an authentication is failed. From this template,
we can extract the following security properties, and we
express them by a macro language, to be applied in the
case study section.

1. An unauthorized access leads eventually to the
activation of a countermeasure. The corresponding
property expressed in the macro language is the
following:
Always (UnautorizedAccess imply eventually
(CounterMeasureTaken))

2. When a request was denied, it is important that the
current request remains unsuccessful until a new re-
quest is received. The corresponding property ex-
pressed in the macro language is the following:
Always((UnautorizedAccessimplyRequest Unsec-
cessful)until NextRequest)

3. When an access is granted, then it should eventu-
ally be able to access the system successfully un-
til the next request is received. The corresponding
property expressed in the macro language is the fol-
lowing:
Always ((AccessGrantedimply eventuallyOpera-
tion) until NextRequest)

Using the Graphviz2 drawing tool, the CTS corre-
sponding to the verified system, as well as the NuSMV
assessment results (i.e., the counterexample), will be vi-
sualized graphically.

1http://nusmv.irst.itc.it
2www.graphviz.org

Waiting

for request

Authentication

failed

Authentication

passed

Authenticate

Evaluate

[Authentication data

is valid according to

policies]

[Authentication data

is not valid according

policies][Countermeasure]

[Forward Message]

Figure 3: UML state machine template for the message
authentication property.

VI. CASE STUDY

An Automated Teller Machine (ATM) is a system that
interacts with a potential customer (user) via a specific
interface and communicates with the bank over an ap-
propriate communication link.

A user that requests a service from the ATM has to
insert an ATM card and enter a personal identification
number (PIN). Both information need to be sent to the
bank for validation, if the credentials of the customer are
not valid, the card will be ejected out. These tasks of val-
idation and ejecting are presented by an UML state ma-
chine diagram witheffect(see Section III.) as described
in Figure 4. Otherwise, the customer will be able to

Figure 4: A state machine specifying the behavior of an
ATM.

perform one or more transactions where the card stays
retained in the machine during the customer interaction
until the customer wishes no further service. This part of
transaction is described by the activity diagram depicted
in Figure 5.

To assess the composed diagram showed in Figure
4, we compose its CTS semantic models correspond-
ing to state machine in Figure 6 and activity diagram
in Figure 7 with the transition representing the interface
of the effect as shown in Figure 8. From the message
authentication template and their associated application-

Figure 5: specifying the behavior of an ATM transaction.

Figure 6: The CTS corresponding to the State Machine
of Figure 4.

independent properties defined in Section V., we instan-
tiate their corresponding ATM dependent properties for-
mulated with CTL as follow:

1. A wrong Pin or Card leads automatically to eject-
ing the card.
CTL: AG ((!CardV alid|!PINV alid)) →
EF (Eject)

2. A wrong Pin or Card remains an unsuccessful con-
nection till a new request.
CTL: A[EF [(!CardV alid|!PINInvalid)
→ AX !OpenConnection]UIdle]

3. When both Card and Pin are valid, then it should
eventually be able to make an operation until the
next request is received.
CTL: A[AG (CardV alid & PINV alid) →
A[A[!OpenConnection U V erifyIdentity] U Eject]

The operators used in the above properties are a mix
of logical (!:Not, |:Or, &: And,→: Imply), and tempo-
ral operators (A: All, E: Exists, X: neXt, G: Globaly, F:

Figure 7: The CTS corresponding to the Activity Dia-
gram of Figure 5.

Finally, U: Until).
To take advantage ofthe Corollary 1, we verify the fol-
lowing property:

4. AG(Init → EF (OpenConnection →
EF (doOperation)))

So without constructing the whole CTS, just by veri-
fying the property in the CTS of the activity diagram we
conclude that the first property is validated for the whole
model.

The verification of the above properties are done by
the model checker NuSMV version 2.4.3 reveals the
validation of the two first properties, and the fourth
one. The violation of the third property as showed by
the counterexample in Figure 8. The system diame-
ter(minimum number of iterations of the NuSMV model
to obtain all the reachable states) in the verification of
each one of the properties is 10, and the number of reach-
able states is 36 out of 245760 and this is due to cone of
influence algorithm implemented from second version of
NuSMV and up.

VII. C ONCLUSION

In this paper we extended the formal verification from
individual UML behavioural diagrams into more com-
plex interactions between state machine, activity, and
interaction UML behavioural diagrams. This approach
allows verification engineer to detect flaws in the earlier
stage of software cycle for more wide and complex sys-
tems. In fact this is what happens especially in industry
where different diagrams interact together. In addition,
our approach gives flexibility to write very expressive
properties while hiding temporal operator. This tech-
nique, along with other verification tools, can provide
a powerful and very useful framework to detect errors at
the design phase, resulting in reliable software at the end
of the software development process.
As a future work, we target two main problems. Firstly,
we intend to improve the verification approach in order
to deal with more very large and more complex system

by splitting the property and distributing sub-properties
to the affected parts of the system to the end to achieve a
conccurent verification, and develop a formalism proof
rules to guaranty the satisfaction of the main property for
the whole system. Secondly, The verification of the in-
teracted diagrams must be done without changing their
semantic models and verification tools if exists in the
separate case in term to produce an optimal verification
(cost/size of states). Even in this context, it’s very inter-
esting to develop these perspective theory and applica-
tions for the industry as acadimia challenges.

Figure 8: A counterexample for the third property

REFERENCES

[1] L. Alawneh, M. Debbabi, Y. Jarraya, A. Soeanu,
and F. Hassayne. A unified approach for verifica-
tion and validation of systems and software engi-
neering models. InECBS ’06: Proceedings of the
13th Annual IEEE Interntl. Symp. and Works. on
Eng. of Comp. Based Sys., pages 409–418, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[2] C. Baier and J. P. Katoen.Principles of Model
Checking. MIT Press, New York, 2008.

[3] M. E. Beato, M. Barrio-Solrzano, C. E. Cuesta,
and P. de la Fuente. Uml automatic verification
tool with formal methods.Electronic Notes in The-
oretical Computer Science, 127(4):3 – 16, 2005.
Proceedings of the Workshop on Visual Languages
and Formal Methods (VLFM 2004).

[4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci, and Ph. Schnoebelen.Systems
and Software Verification. Model-Checking Tech-
niques and Tools. Springer, 2001.

[5] B H. C. Cheng, S. Konrad, L. A. Campbell, and
R. Wassermann. Using security patterns to model
and analyze security. InIn IEEE Workshop on Re-

quirements for High Assurance Systems, pages 13–
22, 2003.

[6] W. Dong, J. Wang, Z. Qi, and N. Rong. Compo-
sitional verification of uml dynamic models. In
APSEC ’07: Proceedings of the 14th Asia-Pacific
Soft. Eng. Conf., pages 286–293, Washington, DC,
USA, 2007. IEEE Computer Society.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in property specifications for finite-state veri-
fication. In ICSE ’99: Proc. of the 21st internatnl
conf. on SE, pages 411–420, New York, NY, USA,
1999. ACM.

[8] Rik E. and Roel W. Tool support for verifying uml
activity diagrams.IEEE Transactions on Software
Engineering, 30, 2004.

[9] H. Giese, M. Tichy, S. Burmester, and S. Flake.
Towards the compositional verification of real-
time uml designs. SIGSOFT Softw. Eng. Notes,
28(5):38–47, 2003.

[10] Cimatti Clarke Giunchiglia, A. Cimatti, E. Clarke,
F. Giunchiglia, and M. Roveri. Nusmv: a new
symbolic model verifier. pages 495–499. Springer,
1999.

[11] S. Leue and P. B. Ladkin. Implementing and veri-
fying msc specifications using promela/xspin. In
Proceedings of the DIMACS Workshop SPIN96,
pages 65–89, 1997.

[12] I. Siveroni, A. Zisman, and G. Spanoudakis. Prop-
erty specification and static verification of uml
models. InARES ’08: Proceedings of the 2008
Third Interntl Conf. on Avail., Reliab. and Sec.,
pages 96–103, Washington, DC, USA, 2008. IEEE
Computer Society.

[13] M. F. Van Amstel, Ch. F. J. Lange, and M. R. V.
Chaudron. Four automated approaches to analyze
the quality of uml sequence diagrams. InCOMP-
SAC ’07: Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Con-
ference, pages 415–424, Washington, DC, USA,
2007. IEEE Computer Society.

[14] A. Zisman. A static verification framework for se-
cure peer-to-peer applications. InICIW ’07: Pro-
ceed. of the 2nd Internatnl Conf. on Internet and
Web Applic. and Serv., page 8, Washington, DC,
USA, 2007. IEEE Computer Society.

APPENDIX

Theorem. The composition of CTS’s is associative, i.e.,:
(CTSi ◦ CTSj) ◦ CTSk = CTSi ◦ (CTSj ◦ CTSk).

Proof. Consider three configuration transition systems
CTSi, CTSj, andCTSk. CTSi composeCTSj in
the transition (called the interface)→r (ci1, acti, ci2)
where , andCTSj composeCTSk in a the transition
→l (cj1, actj , cj2).
CTSi ◦ CTSj = Γ (C1, Act1,→1, I1, E1) where:

• C1 = (Ci ∪ Cj) \{Ij , Ej},
• Act1 = (Acti ∪ Actj) \{acti},
• →1 ⊆ (→i ∪ →j) \ →r,
• I1 = Ii,
• Ij = ci1, Ej = ci2, andE1 = Ei.

And CTSj ◦CTSk = Λ (C2, Act2,→2, I2, E2) where:

• C2 = (Cj ∪ Ck) \{Ik, Ek},
• Act2 = (Actj ∪ Actk) \{actj},
• →2 ⊆ (→j ∪ →k) \ →l,
• I2 = Ij ,
• Ik = cj1, Ek = cj2, andE2 = Ej .

From another side we haveΣ
′

= Γ ◦ CTSk in
→l (cj1, actj, cj2) and Σ

′′

= CTSi ◦ Λ in →r

(ci1, acti, ci2), and by the same composition we will

haveΣ
′

(

C
′

, Act
′

,→
′

, I
′

, E
′

)

where:

• C
′

= (C1 ∪ Ck) \{Ik, Ek},
• Act

′

= (Act1 ∪ Actk) \{actj},
• →

′

⊆ (→1 ∪ →k) \ →l,
• I

′

= Ii,
• Ik = cj1, Ek = cj2, andE

′

= Ei.

andΣ
′′

(

C
′′

, Act
′′

,→
′′

, I
′′

, E
′′

)

where:

• C
′′

= (Ci ∪ C2) \{I2, E2},
• Act

′′

= (Acti ∪ Act2) \{acti},
• →

′′

⊆ (→i ∪ →2) \ →r,
• I

′′

= Ii,
• I2 = ci1, E2 = ci2, andE

′′

= Ei.

From the two previous result we find:Σ
′′

≡ Σ
′′

, so the
composition is associative up to isomorphisme.

Corollary. LetCTS = CTS1◦ . . .◦CTSi◦ . . .◦CTSn

a CTS composed of n-sub-CTS, andπ a property, the
following expression is always true:
[(CTSi ◦ . . . ◦ CTSn) |= π] ⇒ [CTS |= π].

Proof. Here we will use the same formula and indica-
tions used in the previous proof to prove the first part.
Let’s for a given property (π), and a global model
CTS = CTS1 ◦ . . . ◦ CTSn. Here we like to prove
the following expression: [(CTSi ◦ . . . ◦ CTSn) |=
π] ⇒ [CTS |= π] From the theorem1, we can write
CTS = Γ ◦ Λ where:Γ = CTS1 ◦ . . . CTSi−1, and,
Λ = CTSi◦. . .◦CTSn. So we have to prove the follow-
ing: (Λ |= π) ⇒ [(Γ ◦ Λ) |= π]. Considerπ a sequence
of states:π = (s0, . . . , sn)
(Λ |= π) ⇔ (∃ ↪→⊆→2:↪→≡ π).
From the previous proof, we have→2⊆→ So, π ⊆→
which mean(Γ ◦ Λ) |= π. Finaly,CTS |= π.

