Verification of the Correctness in Composed UML
Behavioural Diagrams

S. Oucharti and O. Ait Mohametl and M. Debbali and M. Pourzandi
!Computer Security Laboratory, Concordia University, Meat, Canada
2Software Research, Ericsson Canada, Town of Mount-RoyalaGa

Abstract— The Unified Modeling Language by aformallanguage after extracting the semantic model
UML 2.0 plays a central role in modern software en- of UML design, and then they translate it into the input
gineering, and it is considered as the de facto stan- languages of the existing model checkers.
dard for modeling software architectures and de- Most of the approaches proposed in the literature are
signs. Todays systems are becoming more and moreintended either to activity, state machine [1, 3, 5, 6, 8,
complex, and very difficult to deal with. The main 9, 12, 14], or sequence diagrams [1, 13] separatly. We
difficulty arises from the different ways in modelling experience in industrial collaborations, that in practice
each component and the way they interact with each most UML behavioural diagrams are mixed and con-
others. At this level of software modeling, providing nected. Effectively, in the literature there is a poor prior
methods and tools that allow early detection of errors approachs that proposes a solution for this case when
is mandatory. UML behavioural diagrams interacts.

In this paper, a verification methodology of a com- The main intent of our work is to focus on the verifi-
position of UML behavioural diagrams (State Ma- cation of UML design models containing different con-
chine, Activity Diagram, and Sequence Diagram) is nected UML behavioral models. We will focus on se-
proposed. Our main contribution is the systematic curity properties like authentication. For that we have
construction of a semantic model based on a novel chosen the model checking technique because it's au-
composition operator. This operator provides an ele- tomatic, and characterized by features like model re-
gant way to define the combination of different kind duction. To construct the semantic model of different
of UML diagrams. In addition, this operator possesa UML behavioural diagrams, we defined a new compo-
nice property which allows to handle the verification sitional operator to fully automate the semantic model
of large system efficiently. To demonstrate the effec- generation of the interacted UML models. The secu-
tiveness of our approach, a case study is presented. rity properties are specified by a simple instantiation

. » . from security templates describing a set of application-

Keywords: Transition System, Unified Modelling j,qenendent properties to produce a set of application-
Language (UML),Model Checking, Security Pmpert'esdependent properties proper to the application[s].

As a case study, we apply the proposed technique to
verify the message authentication security property on
A major challenge in the software development proautomated Teller Machine (ATM). ATM is written as
cess is to advance error detection to early phases &f UML-based model composed of two different UML
the software life-cycle. For this purpose, the verificabehavioural diagrams:a state machine describing client
tion of UML diagrams plays an important role in detectauthentication and an activity diagram describing trans-
ing flaws at the design level. It has a distinct imporaction operation. The ATM security properties were ob-
tance for software security, since it is crucial to detegained from the authentication templates, and formalized
security flaws before they have been exploited. Frogy the formal language : the Computational Tree Logic
the literature, a lot of techniques have been proposedTL)[2]. The result of this case study shows how to
for verification of softwares as well as hardwares likeyerify a complex system described by a mixed UML be-
Model Checking, Theorem Proving, and Static Analyhavioural diagram.
sis, etc. The most of the techniques used for verification The remainder of this paper is organized as follows:
of UML diagrams is model checking. Model checkingsection Ilpresents the related work. Section Illexpore
is an important technology of automatic verification. IlUML behavioral diagrams (BDs) and their possible in-
verifies the properties against a model through expliciéractions inside a UML design. We define and generate
state exploration, and elegantly presents the counter @fe semantic model for the global UML design in the
ample paths when the system does not satisfy a praprm of transition system in Section I\V. The proposed

erty. The most important researches focusing on modgdrification approach is detailed in Section \. In Section
checking of UML models verify the properties specified

I. INTRODUCTION

Vl.we provide a ATM case study. Finally, we concludeploit the results of the verification of individual patterns
the paper by a conclusion and a promising future workmstel et al.[13] propose trace analysis techniques by
in Section VIL. using model checkers to improve the quality of sequence
diagrams, and to get PROMELA code from sequence di-
Il. RELATED WORK agrams. This technique provides a translation scheme

In the state of the art, there is a considerable numbert(t)\at is defined in [11]. These works are limited to just

researches which are intended to verify just one kind ghe kind of real-time diagram as well as sequence dia-

UML behavioural bediagrams like a state machine or gam-

sequence diagram without taking in consideration their Dong et al. in [6], define a set of rules to verify UML

interactions when a state machine call an activity di%?;n:r?(')cm'\;;d?; ZZr?Sseex:’]St':srestbrai?dreosn Zféa?;:"
gram for example. u Wi I uctures, imu

Cheng et al. [5] investigate how the verification of selation relation to reduce the detailed components to an

curity properties can be enabled by adding formal Corz;_bstracted specifications. In their work, they gave the

straints to UML-based security patterns. From the pré‘—ESUIts without linking their simple case study to the the-
posed templates, they instantiate the security propertl%r pro?or?ed: '\"fr? thanl that, _they dlcénlt mhe.nrt:(.)n tr?e
to enable their analysis by using the Spin model checkg.e?ct oft € S'm.l]f. atlc_m relation in a model which is the
The limit of their work is in how to tailor a security pat- main step in verification.

tern to meet the needs of a system especially when, itln [4], a.framework has been proposeq for vern‘y_—
contains a set of connected diagrams. ing UML diagrams, the extracted semantics model is

A Static Verification Framework (SVF) is developped:a"ed Configuration Transition System (CTS), a kind of

in [14] to support the design and verification of secuﬁaﬂsmon System. The resulting CTS is translated into

peer-to-peer applications. The framework supports t uSMYV [10] code. This approach allows verfication be-

specification, modeling, and analysis of security propelP-aVIoral agamsF properties written in CTL, and our work
the continuation of [1].

i her with the behavior of th . The SVE
ties together with the behavior of the system es The verificationin[1, 3,5, 6, 8,9, 12, 13, 14] is done
y using different semantic models, and using different

developped in [12] is the continuation work of Andre
14], they translate the UML state machine includin . .

[14] y ine Incud Heckmg techniques. None of them addressed the prob-
em of linking several UML Behavioural Diagrams.

guards into Promela models that are amenable for S
model checking with LTL properties. Their works ar
limited to only the state machine diagram that describe a|||. SynTaAX OF UML B EHAVIORAL DIAGRAMS

peer-to-peer applications, also their properties repitsse])
just a proposed scenarios for the attacker. UML supports behavioral modeling, but more than that

Beato et al. [3] developed a complete automatic todj SUPPOrts the interaction between behavioral models.
called TABU to transform active and state machine did=/9ure 1 shows the different UML behavioral models. In
grams into an SMV (Symbolic Model Verifier) specifi-th's section, we explore all the possible interactions be-
cation via Labeled Transition Systems (LTS). The propvéen UML behavioral diagrams to complete the systax
erties are specified by the pattern classification proposdgfined in [1].
by Dwyer et al [7]. In their work, they didn’t consider o giate Machines (SM)

when a state machines are composed with activity dia- i)
grams. In UML, we have two kinds of State Machines (SM):

Eshuis et al. describe in [8] a tool that verify UML acbehavioral state machineand protocol state machines

tivity diagrams by specifying the activity diagrams as _ghe role of these two diagrams is to express the behav-
Clocked Transition Systems then generate automaticalf}f ©f the system, and the usage protocol of part of that

the NUSMV input code. The limits of their approach reSYStém, respectively. A SM can have association with a
sides when they ignore the verification of some cases B 1N Its state as in its transition:

stopping the computation of the transition system if one ¢ State: It models a situation where some invariant

of the nodes becomes unbounded, and more than that, condition holds. A state can have one association

they focuse only on activity diagram. with a BD in three places:

Giese et al. provide in [9] a domain specific formal
semantic definition to verify a real-time UML design
and an integrated sequence of design steps by prescrib-
ing how to compose complex software systems from
domain-specific patterns. The composition of these pat-
terns to describe the complete component behaviour is 2. Entry, a BD is executed whenever the state
prescribed by a syntactic definition which guarantees the is entered regardless of the transition taken
verification of components and system behaviour can ex- to reach the state. If defined, entry actions

1. doActivity a BD is executed while being in
the state. The execution starts when this state
is entered, and stops either by itself or when
the state is exited whichever comes first.

Ciamse e ObjectNode: It's an abstract activity node that con-

tains only values at runtime that conform to the type
x of the object node. It has an association with a BD
in Selectiorto select tokens for outgoing edges.

<«/mport»

amport» ‘ C. Interaction Diagram(ID)

CommonBehaviars

pressenn s T . . . -
1 «nport> INteractions are a mechanism for describing systems

n i that can be understood and produced by providing dif-
‘ ' ferent capabilities that makes it more appropriate for
certain situations (i.e, Sequence Diagrams, Interaction

<) N
mpor: : «mports

—‘1 —‘:

activiis e SeteMachines Lcmes JOVerview Diagrams, Communication Diagrams, Timing
Diagrams and Interaction Tables). This kind of diagrams
: can have association with only one BD at time iBex
<dmport haviorExecutionSpecificatiaiement. Itis a kind oEx-
— ecutionSpecificatiorepresenting the execution of a be-
havior. A BehaviorExecutionSpecificati@an be asso-

ciated with those BD having their execution occurring in
. _) a Behavior element.
Figure 1: all the possible interactions between UML be- For the remainder of this paper we ndte,; as the

havioral diagrams. set of elements where the BDs can be connected.

IV. SEMANTIC OF UML BEHAVIORAL DIAGRAMS

are always executed to completion prior to, Configuration Transition System

any internal behavior or transitions performed .) . .
within the state. A Configuration Transition System (CTS)[1] is a formal

description of the behavior of a system. A CTS is con-
3. Exit, a BD is executed whenever this statsidered as a directed graph where nodes represent
is exited regardless of which transition wadigurations and edges modétansitions A Configura-
taken out of the state. If defined, exit actionsion is a specific binding of a set of values to the set of
are always executed to completion only afvariables in the dynamic domain of the behavior of a sys-
ter all internal activities and transition actiongem. i.e, the set of value assigned to the variables of the
have completed execution. system during one step of execution (e.g., the evaluation
of variables in an iteration of a program). Hansition
. @pecifies how the system can change from one config-
source vertex gnd.atarget'vertex |.n'astate machi ation to another i.e, the relation between the current
During the activation of this transition, the behav-

. i e -) configuration and next ones. Definition 1 [1] gives the
ioral diagram specified in association wilffect formal definition of a CTS

can be executed.

e Transition: It is a directed relationship between

S Definition 1 (Configuration Transition System)A
B. Activity Diagram (AD) Configuration Transition System CTS is a tuple

An activity diagram includes concurrent control, datdC» Act, =, I, E) where:

flow, and decisions. It supports structured activities (se- e (' is a set of configurations,

guences, loops, and conditions), but it can have just ones Act is a set of actions,

association with another behavior at time for each of the s —C ' x Act x C is a transition relation,
following activity elements: e [is the initial state,

¢ DecisionNode: It is a control node that chooses be- * Eis the final state.

tween outgoing flows. It has an associatiordir Large systems are built from smaller parts, so we have
cisionlnputto provide input to guard specificationsto reason about their components, and how they inter-
on edges outgoing from the decision node. acts. Semantically, a compondmj of a system is rep-

e ObjectFlow: Itis an activity edge to model the flowresented byC'T'S; and the parallel composition of the
of values to/or from object nodes that can have olsystemII; || ... || II, is represented by the composi-
jects or data passing along them. It can have twmn of CTSs component§7'S; o ... o CTS,,. In our
associations with a BD iBelectiorobject to select case, the composition is defined as a simple substitution
tokens from a source object node, andansfor- (Definition 2, we substitute the transition relation that
mationobject to change or replace data tokens flowrepresents an element 8f;,,,; (calledinterface by its
ing along edge. corresponding CTS.

Definiton 2 (Composition of CTS) Let ~Algorithm 1: The CTS of a simple diagram

C¢TS;, and CTS; be two CTS where —crgFoundConfList,CTSConfList, CTSTransList,
cTs; = (Ci,ACti,—n,L;,Ei), and CTSJ = EventListlist)

(Cj, Actj, —;,1;, Ej). The composition begin
(CTS; 0 CTS;) of CT'S;, andCT'S; is the substitution while FoundConfList IsNotEmpiyo
of CT'S; in the specific transition that represents the CurrentConf = pop(FoundConfList);
interface —, (ci1, acti, ci2) of CT'S; defined by the if CurrentConf notinCTSConfList
tuple:CT'S = (S, Act, —, 1, E), where: then
CTSConfList = CTSConfList
o U= (GiuCy)\{Ly, B}, {CurrentConf;
o Act = (Act; U Act;) \{act;}, end
e = C (=i U =)\ —p NextTransList=getNext(CurrentConf,EventList);
o I =1, for nextTrans in NextTransListo
o I; =ci1, Ej = c¢p,andE = E,. nextConf = getDestination(nextTrans);
FoundConfList = FoundConfList {
In order to ensure the scalability of the verification nextConf};
process for systems composedlzfinition 1we have end
derivedTheorem 1 The proof is provided in thép- CTSTransList = CTSTransList
pendix NextTransList;

end
Theorem 1. The composition of CTS’s is associative, gng
i.e.: (CTS;0CTS;)oCT Sy = CTS;0(CTS;joCTSy).

To generate the CTS of a UML diagram intercon-
More than that, we conclude fromefinition 2the nected with other BDs by association presented in sec-
maximum number of possibilties to apply the compation 2, and noted by-,. in definition 2 we propose the
sitional operation in the initiaC’7’S;. This maximum recursive algorithrilgorithm 2derived fromAlgorithm
is bounded by the number of interfaces and its up to the The algorithm calls itself when a transition contains
number of transitions (n). Also, we can observe that thigh interface. However, we avoid to recalculate the CTSs
composition is not commutative, and not transitive. that have been already generated so far.

B. Generation of Configuration Transition System V. VERIFICATION METHODOLOGY

To capture the semantic model of a single BD havin@Qur contribution is an automatic model checking based
no interaction with other BDs, we have to generatapproach as depicted in Figure 2. The approach consists
its proper CTS where each configuration represent$ two parts: the verification partwhere we construct
the active elements in that diagram, and the transitidghe global semantic model of our design model, and the
represent the transition from source configuration teecond one ithe Specification panvhere we express a
the target configuration. To achieve that, we iterate theet of security properties to be verified for our model.
breadth-first search procedure as presentédgorithm At the beginning othe verification partwe have a set
1 which is the simplified version of the one presented iof separated UML behavioral diagrams, for this reason
[1]. In each iteration, the new configuration exploredve have to extract their corresponding semantic mod-
from the current configuration denoted BurrentConf els (CTS) separately, and based on their interactions in
and the trace of configurations are savedraundCon- the global model we construct its corresponding CTS
fList list whereCTSTransLislist contains the transitions by constructing the set of the existing interfaces be-
between configurations. The unexplored configuratiotseen the CTSs of the small parts. The formal structure
are inCTSConfListist, andEventListlists the possible CTS representing the global system to be verified is a
incoming events. Initially, still they are a discoveredomposition of a small onesZT'Sy,...,CTS,, where
configurations to explore iFoundConfList the top CTS = CTS10...0 CTS,. Our objectif is to check
element is loaded intcCurrentConf and add it into for a given property«) if it holds for CT'S verifying
result list of configuration if it's not added iI6TSCon- CTS E = (i.e. CTSy0...0CTS, [=) involves
fList. Given the current configuratio€urrentConf the exhaustive inspection af7'S instead of the prop-
and the event lisEventList the trace of configuration erty =. The property we want to verify should be for-
FoundConfLisis updated. While this trace is not emptymally specified by a biichi automata, or using a temporal
the configuration transition lis€TSTransListwill be logic to be able to use model checking. BasedDaf-
updated. inition 2,andTheoremlwe have derived a corollary to
handle the verification of the complex system having n

Algorithm 2: The CTS of a composition of dia-
grams

CTS(FoundConfList ,CTSConfList,
CTSTransList,EventLidist, d:diagram
begin
while FoundConfList ISNotEmptyo
CurrentConf = pop(FoundConfList);
if CurrentConf notinCTSConfList
then

CTSConfList = CTSConfList {

‘ CurrentConf};

end
NextTransList=getNext(CurrentConf,EventLi
for nextTrans in NextTransListo
if nextTrans Haslnterfacehen

if d not computedhen

CTSTransList,EventList,d);

end
end
nextConf = getDestination(nextTrans)
FoundConfList = FoundConfList {
nextConf};
end
CTSTransList = CTSTransList
NextTransList;

end
end

sub-components. The proof Gorollary 1 is pesented
in the Appendixand it is based on induction.

Corollary 1. LetCTS = CTS10...0CTS;0...0
CTS,, be a CTS composed of n-sub-CTS, aradprop-
erty, the following expression is always true:

[(CTS;0...0CTS,) En]=[CTS En](l <i<mn).

From Corollary 1, we notice that in order to verify a

‘ CTS(FoundConf List,CTSConf[]

tional Tree Logic (CTL) for NUSMV model checker
[10] in our case. From the semantic model defined in
section 1 we generate the appropriate NuSMV code to
be inputs to NuSMV model checker with the CTL ex-
pression of the instantiated security properties.

Security Properties UML —based
Templates Behavioral
lL Diagrams
Application- Composition of
independent UML —~based Semantic Models
security properties Behavioral
Diagrams
Application-
. Composed
dependent §ecur|ty Semantic Model <J
properties

4 4

Verification engine

Figure 2: Compositional Verification Approach.

As an example of this kind of specification, we picked
the template of message authentication presented in Fig-
ure 3 as a UML state machine where a countermeasure is
taken if an authentication is failed. From this template,
we can extract the following security properties, and we
express them by a macro language, to be applied in the
case study section.

1. An unauthorized access leads eventually to the
activation of a countermeasure. The corresponding
property expressed in the macro language is the
following:

Always (UnautorizedAccessimply eventually
(CounterMeasureTaken))

. When a request was denied, it is important that the
current request remains unsuccessful until a new re-
quest is received. The corresponding property ex-

property we don'’t need to construct the whole semantic
model of the system but only a subset. The main advan-
tage of theCorollary 1is to accelerate and optimize the
verification procedure.

The specification part Our approach is a model
checking based, so we have chosen to formalize our
security properties by using a temporal language like
(LTL, CTL, CTL*)[4] depending on the model checker
used. For that, we are using a set of security templates
proposed in [5]. Firstly, we extract the application-
independent security properties from a given templates

3.

pressed in the macro language is the following:
Always((UnautorizedAccesmply Request Unsec-
cessfuljuntil NextRequest)

When an access is granted, then it should eventu-
ally be able to access the system successfully un-
til the next request is received. The corresponding
property expressed in the macro language is the fol-
lowing:

Always ((AccessGrantedmply eventuallyOpera-
tion) until NextRequest)

of security patterns like:Single Access PointCheck
Point, Roles Session Full View with Errors Limited
View, Authorization Multi-level Security Secondly, we

Using the GraphviZ drawing tool, the CTS corre-
sponding to the verified system, as well as the NuSMV
assessment results (i.e., the counterexample), will be vi-

instantiate their appropriate application—dependemsecSuallzed graphically.
rity properties and formalize them using temporal lan- thupnusmv.irst.tc.it
guage of the adopted model checker such as Computazwww.graphviz.org

[Forward Message] | Authentication
passed [Authentication data
is valid according to
the system’s
Waiting
for request
Authentication
[Countermeasure] failed

policies]
Figure 3: UML state machine template for the message
authentication property.

Authenticate

Evaluate

[Authentication data
is not valid according
to the system’s
policies]

VI. CASE STUuDY

An Automated Teller Machine (ATM) is a system that
interacts with a potential customer (user) via a specif
interface and communicates with the bank over an ap-
propriate communication link.

A user that requests a service from the ATM has to
insert an ATM card and enter a personal identification
number (PIN). Both information need to be sent to the
bank for validation, if the credentials of the customer are
not valid, the card will be ejected out. These tasks of val-
idation and ejecting are presented by an UML state ma-
chine diagram witheffect(see Section Il). as described
in Figure 4. Otherwise, the customer will be able to

Intiastate @Ect

Fork

Init

PINInvalid, VerifyCard VenifyPIN, Eject l VerifyPIN, CardValid I PINValid, VerifyCard

@ Effect

Fark
&2 Verifyldentity a1 [else]
42 [else]
[idOK]

& OpenConnection

[connOK]

Join

& doOperation

ml

m2

end

Egure 5: specifying the behavior of an ATM transaction.

VerifyPIN, VerifyCard

wﬂm&w}@

Figure 6: The CTS corresponding to the State Machine

of Figure 4.

independent properties defined in Section V. we instan-
tiate their corresponding ATM dependent properties for-
mulated with CTL as follow:

1. A wrong Pin or Card leads automatically to eject-
ing the card.
CTL: AG ((!CardValid|!PINValid))
EF (Eject)

2. Awrong Pin or Card remains an unsuccessful con-

nection till a new request.

Figure 4: A state machine specifying the behavior of an -

ATM.

perform one or more transactions where the card stays) ; ,
retained in the machine during the customer interaction C1L: AEF|[(!CardValid[! PIN Invalid)

i . y) ! ;
until the customer wishes no further service. This part of erfX.k?pﬁngoznecgog]UIdle] iid. then it should
transaction is described by the activity diagram depicteds' en both Card and Pin are valid, t en Its ou
eventually be able to make an operation until the

in Figure 5. . :
To assess the composed diagram showed in Figure nextrequestis received.
P g W CTL: A[AG (CardValid & PINValid) —

4, we compose its CTS semantic models correspond-
ing to state machine in Figure 6 and activity diagram “HAl!OpenConnection U Verifyldentity| U Eject]

in Figure 7 with the transition representing the interface The operators used in the above properties are a mix
of the effect as shown in Figure 8. From the messagé logical (:Not, |:Or, &: And,—: Imply), and tempo-
authentication template and their associated applicatiaial operators (A: All, E: Exists, X: neXt, G: Globaly, F:

by splitting the property and distributing sub-properties
to the affected parts of the system to the end to achieve a
conccurent verification, and develop a formalism proof
rules to guaranty the satisfaction of the main property for
the whole system. Secondly, The verification of the in-
teracted diagrams must be done without changing their
semantic models and verification tools if exists in the
separate case in term to produce an optimal verification
(cost/size of states). Even in this context, it's very inter
esting to develop these perspective theory and applica-
tions for the industry as acadimia challenges.

Figure 7: The CTS corresponding to the Activity Dia-
gram of Figure 5.

Finally, U: Until).
To take advantage dahe Corollary 1, we verify the fol-
lowing property:

4. AG(Init — EF(OpenConnection —
EF(doOperation)))

So without constructing the whole CTS, just by veri-
fying the property in the CTS of the activity diagram we
conclude that the first property is validated for the whole
model.

The verification of the above properties are done by
the model checker NuUSMV version 2.4.3 reveals the
validation of the two first properties, and the fourth
one. The violation of the third property as showed by Figure 8: A counterexample for the third property
the counterexample in Figure 8. The system diame-
ter(minimum number of iterations of the NuSMV model
to obtain all the reachable states) in the verification of
each one of the propertiesis 10, and the number of reach-
able states is 36 out of 245760 and this is due to cone dfi] L. Alawneh, M. Debbabi, Y. Jarraya, A. Soeanu,
influence algorithm implemented from second versionof and F. Hassayne. A unified approach for verifica-
NuSMV and up. tion and validation of systems and software engi-
neering models. ECBS '06: Proceedings of the
13th Annual IEEE Interntl. Symp. and Works. on
In this paper we extended the formal verification from Eng. of Comp. Based Sypages 409-418, Wash-
individual UML behavioural diagrams into more com- ington, DC, USA, 2006. IEEE Computer Society.
plex interactions between state machine, activity, and2] C. Baier and J. P. KatoenPrinciples of Model
interaction UML behavioural diagrams. This approach Checking MIT Press, New York, 2008.
allows verification engineer to detect flaws in the earlier[3] M. E. Beato, M. Barrio-Solrzano, C. E. Cuesta,
stage of software cycle for more wide and complex sys- and P. de la Fuente. Uml automatic verification
tems. In fact this is what happens especially in industry tool with formal methodsElectronic Notes in The-
where different diagrams interact together. In addition, oretical Computer Scien¢el27(4):3 — 16, 2005.
our approach gives flexibility to write very expressive Proceedings of the Workshop on Visual Languages
properties while hiding temporal operator. This tech- and Formal Methods (VLFM 2004).
nigue, along with other verification tools, can provide[4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie,

a powerful and very useful framework to detect errorsat ~ A. Petit, L. Petrucci, and Ph. Schnoebel8gstems
the design phase, resulting in reliable software at the end and Software Verification. Model-Checking Tech-
of the software development process. niques and ToolsSpringer, 2001.

As a future work, we target two main problems. Firstly, [5] B H. C. Cheng, S. Konrad, L. A. Campbell, and
we intend to improve the verification approach in order R. Wassermann. Using security patterns to model
to deal with more very large and more complex system and analyze security. lm IEEE Workshop on Re-

REFERENCES

VIl. CONCLUSION

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

Theorem. The composition of CTS’s is associative, i.e.
(CTS; 0CTS;) 0o CT Sy, =CTS; 0 (CTS;j0CTSy).

quirements for High Assurance Systepeges 13— o C; = (C; U Cy) \{I;, E;},

22, 2003. o Act; = (Acti @] ACtj) \{acti},

W. Dong, J. Wang, Z. Qi, and N. Rong. Compo- e —; C (—; U —;)\ —,

sitional verification of uml dynamic models. In e [} = I;,

APSEC ’'07: Proceedings of the 14th Asia-Pacific e I; = ¢;1, E; = ¢;2, andE; = E;.

Soft. Eng. Confpages 286—293, Washington, DC, ‘ _ .

USA, 2007. IEEE Computer Society. ANd CTS; 0 CTSy = A (Cy, Acty, =2, I, y) where:

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat- ® C2 = (C; U Cy) \{Ix, E},

terns in property specifications for finite-state veri- ® Actz = (Act; U Acti) \{act;},

fication. INICSE '99: Proc. of the 21stinternatnl ® —2 C (—=; U —x)\ —u,
[]
[]

conf. on SEpages 411-420, New York, NY, USA, I = I,

1999. ACM. I, = ¢j1, By, = ¢jo, andEy = Ej5.

Rik E. and Roel W. Tool support for verifying umi From another side we hav® = I o CTS, in
activity diagrams.IEEE Transactions on Software_)l (¢;1,act;, cj2) and ' = COTS; o A in '_)T

Engineering 30, 2004. (ci1,act;, ciz), and by the same composition we will
H. Giese, M. Tichy, S. Burmester, and S. Flakeh S (O At —' I E') where:
Towards the compositional verification of real- ave (yAack, =, 1,)W ere.

time uml designs. SIGSOFT Softw. Eng. Notes o = (C1UCO)\{ I, Er,

[}

28(5):38-47,2003. ,

. X e L . . Act = (A A O,
Cimatti Clarke Giunchiglia, A. Cimatti, E. Clarke, C,tc (CtLU cti) \{act;}
F. Giunchiglia, and M. Roveri. Nusmv: a new : 7_—1 (=1U =)\ =1
symbolic model verifier. pages 495-499. Springer, - /
1%99. Ped Pringer. I, = cj1, By = cjo, andE = E;.
S. Leue and P. B. Ladkin. Implementing and veriypgs” (C”,Act”, —>”,I”,E”) where:

fying msc specifications using promela/xspin. In

Proceedings of the DIMACS Workshop SPIN96 e C” = (C; U Cy) \{Is, E},
pages 65-89, 1997. o Act” = (Act; U Acty) \{act;},

I. Siveroni, A. Zisman, and G. Spanoudakis. Prop- ¢ — C (—; U —3)\ —,

erty specification and static verification of uml e I = I;,

models. INARES '08: Proceedings of the 2008 e I, = ¢;;, By = ¢i», andE” = E;.

Third Interntl Conf. on Avail., Reliab. and Sec. rom the two previous result we find’ = % so the
pages 96—103, Washington, DC, USA, 2008. IEEE ewop o . o
composition is associative up to isomorphisme. [

Computer Society.
M. F. Van Amstel, Ch. F. J. Lange, and M. R. V.Corollary. LetCTS = CTS10...0CTS;0...0CTS,
Chaudron. Four automated approaches to analyaeCTS composed of n-sub-CTS, ana property, the
the quality of uml sequence diagrams. G®MP- following expression is always true:

SAC '07: Proceedings of the 31st Annual Interna{CT'S; o ...o CTS,) = 7] = [CTS = 7).

tional Computer Software and Applications Con-

ference pages 415424, Washinglon, DC, USAg -2t C8IE e M 88 B St o o
2007. IEEE Computer Society. P P P part.

A. Zisman. A static verification framework for se-LetS for a given property £), and a g!obal model
L - CTS = CTS;0...0CTS,. Here we like to prove
cure peer-to-peer applications. 1@IW '07: Pro-

ceed. of the 2nd Internatnl Conf. on Internet anéhe following expression:[(CTS; 0... 0 CTSy) ':
Web Applic. and Servpage 8, Washington, DC 7] = [CTS | =] Fromthe theoremlwe can write

. "CTS =T oA where:I' = CTS,0...CTS;_1, and,
USA, 2007. IEEE Computer Society. A =CTS;o...0CTS,. Sowe have to prove the follow-
APPENDIX ing: (A =) = [(T' o A) = 7]. Considerr a sequence
of statesit = (so,. ., $n)
(AET) & (3—>Cogp—o=m).
From the previous proof, we have,C— So, 7 C—

Proof. Consider three configuration transition systemahich meanT o A) |= . Finaly, CT'S = .

CcTS;, CTS;, andCTS,. CTS; composeCTS; in O
the transition (called the interface}, (c;1,act;, c;2)

where , andC'T'S; composeCT'S;, in a the transition

—1 (le, actj, ng).

CTS; 0 CTS; =T (C1, Act1,—1, I1, E1) where:

