ELECTRONICS-I (ELEC 311/1 BB)

Mid-Term Test (Summer 2013)

(No CRIB sheet allowed. Only ENCS approved calculator allowed)

Electrical and Computer Engineering Department Instructor: Dr. R. Raut

June 16, 2013

Time: 70 minutes

(Answer ALL questions)

Please return the question paper with your answer book

Q.1: For the circuit in Fig.1, both diodes are identical. Find the value of R for which V = 90 mV. Assume n = 2. Hint: Use exponential model for the diodes.

$$\frac{1}{1^{2}} = enp\left(\frac{v_{02} - v_{02} + v_{01}}{2 \times v_{02} S}\right) \qquad v = qomv = 1^{2}R$$

$$v = qomv = 1^{2}R$$

Figure 1

- Q.2: An electronic amplifier is characterized by the output-input relation $v_O = 2[0.5 e^{-20v_f}]$.
- (a) Show a graphical sketch of the transfer characteristic over $0 < v_I < 100 \text{ mV}$.
- (b) What will be the **small signal** gain of the amplifier at an operating input voltage of $V_I = 50$ mV?
- (c) What is the associated output operating point for $V_1 = 50 \text{ mV}$?

(e)
$$v_0^{\dagger} - 0.73v \cdot - \frac{1}{100mV}$$
 $v_1 = 0$

(c) $v_0 = 2(-20)e = 14.71 V/V$

(c) $v_0 = 2(-5-e^{-20XvS}) = 0.26 V$

Q.3: Figure 3 shows the equivalent circuit of a BJT amplifier. Obtain the voltage amplification $\frac{V_0}{V_1}$. Express the magnitude in dB. The various component values are given as: R_8 = 100 ohms, R_2 = 44k ohms, R_3 = 2.2k ohms, R_c = 3.3k ohms, R_L = 4.7k ohms, g_m = 0.05 Ω^{-1} mhos.

Q.4: Figure 4 shows a circuit for an ac voltmeter. The meter shows full scale deflection for a DC current of 1.5 mA. Design the resistance R so that an ac voltage v_i of 15 volts magnitude produces full deflection in the meter. The diode is ideal, and the system works like a half-wave rectifier. The meter has a resistance of 15 Ω .

