
Q.1: For the equivalent circuit below, find the corresponding basic voltage amplifier model, i.e., find (a) $\mathrm{A}_{\mathrm{Vo}}=$ v_{0} / v_{i}, (ii) R_{i}, and (iii) R_{0}. Now find the corresponding transconductance model equivalent for the same circuit.

Q.2: A zener diode exhibits a constant voltage of 5.6 V for currents greater than five times than the knee current $\mathrm{I}_{\mathrm{ZK}}=0.5 \mathrm{~mA}$. The zener is used to build a shunt regulator fed from a raw DC supply with nominal value of 15 V . The load current varies from 0 mA to 15 mA . Find a suitable value for the resistance R which is connected in series with the raw DC supply. The zener has an internal resistance of 5 ohms . What will be the load regulation of this regulator system?
Q.3: A semiconductor junction diode is used in an automatic gain control system as shown below. The ac resistance of the diode is dependent on the amplitude V_{p} of the input signal. Higher V_{p} is, lower is the diode ac resistance and more it tends to attenuate the input ac signal. That is how the gain control mechanism works.

The input signal is half-wave rectified to generate a DC voltage which drives the DC current through the diode. This DC voltage is given by V_{p} / π. The diode is a 1 mA diode. The voltage drop across the diode changes by 100 milli volts for a decade (10 times) change in current through it. You may use the relation: $V_{2}=V_{1}+2.303 n V_{T} \log \left(I_{2} / I_{1}\right)$. The DC resistance of the diode can be neglected.
(a) If the input ac signal has an amplitude of 15 volts, what will be the output signal magnitude v_{o} ?
(b) If the input ac signal amplitude shoots up to 30 volts, how much (approximately) will v_{o} become?

Q.4: Design the following BJT circuit to obtain a dc current of 1 mA and to ensure $\mathrm{a} \pm 2 \mathrm{~V}$ signal swing at the collector; that is design for $\mathrm{V}_{\mathrm{CE}}=2.3 \mathrm{~V}$. Given that $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$, and $\beta=100$.

Q.5: Consider the emitter-follower BJT amplifier circuit below. Find $R_{i n}, R_{\text {out }}$ and the voltage gain $v_{o} / v_{\text {sig. }}$. Given $\mathrm{R}_{\text {sig }}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=40 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \beta=49$, and $\mathrm{V}_{\mathrm{A}}=100 \mathrm{~V}$. The bias current $\mathrm{I}=5 \mathrm{~mA}$. What is the largest peak amplitude of an output sine-wave signal that can be used without the transistor cutting off?

Q.6: (a) Consider the MOS circuit below. The transistor Q_{1} is biased for $\mathrm{I}_{\mathrm{D}}=80 \mu \mathrm{~A}$. Both Q_{1} and Q_{2} have $\mathrm{V}_{\mathrm{t}}=0.6 \mathrm{~V}$. Design R and then find the drain current and drain voltage for Q_{2}. The channel modulation effect may be ignored and you may use the I-V equation: $I=K_{n i}\left(V_{G S}-V_{t}\right)^{2}$, $i=1,2$ for your work. Given $K_{n 1}=500 \mu \mathrm{~A} / V^{2}, \quad K_{n 2}=750 \mu \mathrm{~A} / V^{2}$ for transistors Q_{1} and Q_{2} respectively.
(b) Assume now that the early voltage $\mathrm{V}_{\mathrm{A}}=40 \mathrm{~V}$ for both Q_{1} and Q_{2}. Draw the ac equivalent model for the circuit below.

Q.1: For the circuit shown below, find I_{D} and V_{D} for the case $V_{D D}=5 \mathrm{~V}$, and $R=10 \mathrm{k} \Omega$. Assume that the diode has a voltage drop of 0.7 V at 1-mA current and that the voltage changes by $0.1 \mathrm{~V} /$ decade of current change. Use (a) iteration method, and (b) the piecewise-linear model for the diode with $\mathrm{V}_{\mathrm{DO}}=0.65 \mathrm{~V}$ and $\mathrm{r}_{\mathrm{D}}=20 \Omega$.

Figure 1
Q.2: A bridge-rectifier circuit with a filter capacitor has $\mathrm{R}=100$ ohms. The secondary transformer delivers a sinusoid of 12 V (rms) and has a frequency of 60 Hz . The diodes have $\mathrm{V}_{\mathrm{D}}=0.8 \mathrm{~V}$ each.
(a) What will be the value of the filter capacitor so that the ripple voltage is limited to below 0.5 V peak-to-peak?
(b) What is the DC voltage at the output of the system?
(c) What is the conduction angle for the diode?
Q.3: For the transistor amplifier shown below, assume $\alpha \cong 1$ and $\mathrm{V}_{\mathrm{BE}}=0.5 \mathrm{~V}$ at the edge of conduction.
(a) What are the values of V_{E} and V_{C} for $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$?
(b) For what value of V_{B} does the transistor cut off?, Saturate?
(c) In each case, what values of V_{E} and V_{C} result?

Figure 3
Q.4: For the BJT circuit below, the signal source generates ac signal with zero DC. The transistor has $\beta=100$, and $\mathrm{r}_{\mathrm{o}}=200 \mathrm{k} \Omega$.
(a) Find R_{E} to establish a DC current of 0.5 mA . Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ for conduction.
(b) Find R_{C} to obtain $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.
(c) With $R_{L}=10 \mathrm{k} \Omega$, draw the ac equivalent circuit for the amplifier system, and
(d) Determine the system voltage gain.

Figure 4
Q.5: For the circuit shown below, find
(a) the input resistance $\mathrm{R}_{\text {in }}$, and
(b) the voltage gain $\mathrm{v}_{0} / \mathrm{v}_{\text {sig }}$. Assume that the source provides a small signal $\mathrm{v}_{\text {sig }}$ and that $\beta=100$.
(c)What will be the maximum $\mathrm{v}_{\text {sig }}$ value for which the small signal approximation will remain valid?

Figure 5
Q.6: Consider the MOSFET amplifier in the figure below. Given that $\mathrm{V}_{\mathrm{G}}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=1$ $\mathrm{k} \Omega$. The transistor has $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$, and $k_{n}{ }^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}$.
(a) Find the bias current I_{D} ?
(b) What will be the voltage gain $\mathbf{v}_{\mathbf{o}} / \mathrm{v}_{\text {sig }}$, if $\mathrm{R}_{\mathrm{D}}=20 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G} 1}=2 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 2}=1 \mathrm{M} \Omega, \mathrm{R}_{\text {sig }}$ $=10 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$?

Figure 6

Some important Formulas (BJT \& MOSFET)

Model Parameters in Terms of DC Bias Currents
$g_{m}=\frac{I_{C}}{V_{T}} \quad r_{e}=\frac{V_{T}}{I_{E}}=\alpha\left(\frac{V_{T}}{I_{C}}\right) \quad r_{\pi}=\frac{V_{T}}{I_{B}}=\beta\left(\frac{V_{T}}{I_{C}}\right) \quad r_{o}=\frac{\left|V_{A}\right|}{I_{C}}$
In Terms of g_{m}
$r_{e}=\frac{\alpha}{g_{m}} \quad r_{\pi}=\frac{\beta}{g_{m}}$

In Terms of r_{e}
$g_{m}=\frac{\alpha}{r_{e}} \quad r_{\pi}=(\beta+1) r_{e} \quad g_{m}+\frac{1}{r_{\pi}}=\frac{1}{r_{e}}$
Relationships Between α and β
$\beta=\frac{\alpha}{1-\alpha} \quad \alpha=\frac{\beta}{\beta+1} \quad \beta+1=\frac{1}{1-\alpha}$

Overdrive voltage:

$$
\begin{aligned}
& v_{O V}=v_{G S}-V_{t} \\
& v_{G S}=V_{t}+v_{O v}
\end{aligned}
$$

Operation in the triode region:

- Conditions:
(1) $v_{G S} \geq V_{1} \Leftrightarrow v_{O V} \geq 0$
(2) $v_{G D} \geq V_{1} \Leftrightarrow v_{D S} \leq v_{G S}-V_{t} \Leftrightarrow v_{D S} \leq v_{O V}$
- $i-v$ Characteristics:
$i_{D}=\mu_{n} C_{a x} \frac{W}{L}\left[\left(v_{G S}-V_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$
(1) For $v_{D S}<2\left(v_{G S}-V_{t}\right) \Leftrightarrow v_{D S} \ll 2 v_{O V}$
$r_{D S} \equiv \frac{v_{D S}}{i_{D}}=1 /\left[\mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t}\right)\right]$
Operation in the saturation region:
- Conditions:
(1) $v_{G S} \geq V_{t} \Leftrightarrow v_{O V} \geq 0$
(2) $v_{G D} \leq V_{t} \Leftrightarrow v_{D S} \geq v_{G S}-V_{t} \Leftrightarrow v_{D S} \geq v_{O V}$
- $i-v$ Characteristics:
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$ $r_{o}=\left[\lambda \frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\right]^{-1}=\frac{V_{A}}{I_{D}}$
where

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}
$$

- Transconductance:

$$
g_{m}=\mu_{n} C_{o x} \frac{W}{L} V_{o v}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{o v}}
$$

- Output resistance:

$$
r_{0}=V_{A} / I_{D}=1 / \lambda I_{D}
$$

Q.1: For the equivalent circuit below, find the corresponding basic voltage amplifier model, i.e., find (a) $A_{v o}=v_{0} / v_{i}$, (ii) R_{i}, and (iii) R_{0}.

Figure 1
Q.2: A semiconductor junction diode is used in an automatic gain control system as shown below. The ac resistance of the diode is dependent on the amplitude V_{p} of the input signal. Higher V_{p} is, lower is the diode ac resistance and more it tends to attenuate the input ac signal. That is how the gain control mechanism works.

Figure 2
The input signal is half-wave rectified to generate a DC voltage which drives the DC current through the diode. This DC voltage $V_{D C}$ is given by V_{p} / π, where V_{p} is the amplitude of the ac signal.

The diode is a 1 mA diode. The voltage drop across the diode changes by 100 milli volts for a decade (10 times) change in current through it. You may use the relation $V_{2}=V_{1}+2.303 n V_{T} \log \left(I_{2} / I_{1}\right)$. The DC resistance of the diode can be neglected.
(a) If the input ac signal has an amplitude of 15 volts, what will be the amplitude of the output signal v_{o} ?
(b) If the input ac signal amplitude shoots up to 30 volts, how much will v_{o} become?
Q.3: For the transistor amplifier shown below, assume $\alpha \cong 1$ and $\mathrm{V}_{\mathrm{BE}}=0.5 \mathrm{~V}$ at the edge of conduction.
(a) What are the values of V_{E} and V_{C} for $V_{B}=0 \mathrm{~V}$?
(b) For what value of V_{B} does the transistor cut off?, Saturate?
(c) In each case, what values of V_{E} and V_{C} result?

Figure 3

Q.4: For the circuit shown below, find
(a) the input resistance $R_{\text {in }}$, and
(b) the voltage gain $\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\text {sig }}$. Assume that the source provides a small signal $\mathrm{v}_{\text {sig }}$ and that $\beta=100$.
(c)What will be the maximum $\mathrm{v}_{\text {sig }}$ value for which the small signal approximation will remain valid?

Figure 4
Q.5: Consider the MOSFET amplifier in the figure below. Given that $\mathrm{V}_{\mathrm{G}}=4 \mathrm{~V}$, Rs$=1 \mathrm{k} \Omega$. The transistor has $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$, and $k_{n}{ }^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}$.
(a) Find the bias current I_{D} ?
(b) What will be the voltage gain $\mathbf{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{sig}}$, if $\mathrm{R}_{\mathrm{D}}=20 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G} 1}=2 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 2}=1 \mathrm{M} \Omega$, $\mathrm{R}_{\text {sig }}=10 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$?

Figure 5
Q.6: (a) Consider the MOS circuit below. The transistor Q_{1} is biased for $I_{D}=80 \mu \mathrm{~A}$. Both Q_{1} and Q_{2} have $\mathrm{V}_{\mathrm{t}}=0.6 \mathrm{~V}$. Design R and then find the drain current and drain voltage for Q_{2}. The channel modulation effect may be ignored and you may use the I-V equation: $I_{i}=K_{n i}\left(V_{G S}-V_{t}\right)^{2}$
$i=1,2$
for
your
work.
Given $K_{n 1}=500 \mu \mathrm{~A} / V^{2}, \quad K_{n 2}=750 \mu \mathrm{~A} / V^{2}$ for transistors Q_{1} and Q_{2} respectively.
(a) Assume now that the early voltage $\mathrm{V}_{\mathrm{A}}=40 \mathrm{~V}$ for both Q_{1} and Q_{2}. Draw the ac equivalent model for the circuit below.

Figure 6

Q.1: A full wave bridge rectifier circuit with $1-\mathrm{k}$ load R_{L} operates from a $120-\mathrm{V}$ (rms) $60-\mathrm{Hz}$ supply through a 10:1 step-down transformer as shown in figure 1 below. Each of the diode is modeled as a battery with $0.7-\mathrm{V}$ drop.

Figure 1
(a) What is the peak value of the rectified voltage across the load?
(b) For what fraction of a cycle does each diode conduct?
(c) What is the average current through the load?
Q.2: For the circuit shown in figure 2 , the voltage V_{E} was measured to be -0.7 V . If $=50$, find I_{E}, I_{B}, I_{C}, and V_{C}.

Figure 2
Q.3: In the circuit shown below (Fig.3), the transistor has $=199$. Find

Figure 3
(a) the DC voltage at the collector.
(b) the DC voltage at the base
(c) the input resistance $R_{\text {in }}$ (use the small-signal ac equivalent circuit model for the BJT)
Q.4: In the BJT amplifier circuit of figure 4 , the DC bias current I_{C} is 2.3 mA . The transistor has a $=100$ and Early voltage $V_{A}=100$ Volts.

Figure 4
(a) Draw the small-signal ac equivalent model for the amplifier and show the values of the ac parameters g_{m}, r_{π}, r_{0}.
(b) Find the voltage gain v_{0} / v_{s}.
(c) Up to what value of v_{s} the amplifier will operate properly (i.e., the BJT shall remain in the active mode)?
Q.5: Consider the MOFET amplifier shown in figure 5. Design the resistances so that you can achieve $V_{D}=3.4 \mathrm{~V}, V_{S}=1.6 \mathrm{~V}$, and $I_{D}=0.3 \mathrm{~mA}$. The voltage divider resistances $R_{G 1}, R_{G 2}$ has a current of 1- A. The MOSFET has $V_{t}=1 \mathrm{~V}, k_{n}(w / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$.

Figure 5
Q.6: For the NMOS amplifier shown in figure 6, replace the transistor with its T-equivalent model.

Derive
(a) the expression for the voltage gain v_{s} / v_{i}.
(b) the expression for the voltage gain v_{d} / v_{i}.

Figure 6
(Some formulae and equivalent circuits)

$I_{C}=\beta I_{B}, I_{E}=(\beta+1) I_{B}$	$g_{m}=\frac{I_{C}}{V_{T}}, r_{\pi}=\frac{\beta}{g_{m}}, \alpha=\frac{\beta}{\beta+1}$	$\begin{array}{ll} r_{o}=\frac{V_{A}}{I_{C}}, & r_{e}=\frac{r_{\pi}}{\beta+1}, \\ I_{C}=I_{S} \exp \left(V_{B E} / V_{T}\right) & \end{array}$
$I_{D}=k\left(\frac{W}{L}\right)\left(V_{\text {(linear region) }}^{\left.\left(V_{G S}-V_{t}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right)}\right.$	$I_{D}=k\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{t}\right)^{2}\left(1+\lambda V_{D S}\right)$	$\begin{aligned} & g_{m}=k\left(\frac{W}{L}\right)\left(V_{G s}-V_{t}\right)=\sqrt{\frac{2 k I_{D} W}{L}} \\ & r_{o}=\frac{V_{A}}{I_{D}} \end{aligned}$

Table

Answers to be graded	Q.1 (compulsory)				
Marks					

Q.1: Consider the MOS circuit below. Both Q_{1} and Q_{2} have $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$. Ignore the channel modulation effect. You may use the I-V equation: $I=K_{n i}\left(V_{G S}-V_{t}\right)^{2}, i=1,2$ for your work.

Given $K_{n 1}=500 \mu A / V^{2}, \quad K_{n 2}=750 \mu A / V^{2}$ for transistors Q_{1} and Q_{2} respectively.
(a) Design R to establish $\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ in the transistor Q_{1}
(b) Find the drain current and drain voltage for Q_{2}.

Figure 1:
(Answer any FOUR from the questions below)
Q.2: A zener diode exhibits a voltage of 6.5 V for $I_{Z}=5 \mathrm{~mA}$. The zener has $I_{Z K}=0.5 \mathrm{~mA}$, and a minimum of five times $I_{Z K}$ must flow through the zener for reliable operation. The diode has an internal resistance of 15 ohms . The device is used to build a shunt regulator circuit as shown below.

The raw DC supply has a nominal value of 15 V , and can range between 12 V to 18 V . The load current varies from 0 mA to 15 mA .

Figure 2:
(a) Design a suitable value for the resistance R for reliable operation.
(b) What will be the output voltage if $R_{L}=450 \Omega$ is connected across the output of the system and the raw DC is at its lowest value $(12 \mathrm{~V})$?
Q.3: A bridge-rectifier circuit with a filter capacitor has $R_{L}=100$ ohms. The secondary transformer delivers a sinusoid of $15 \mathrm{~V}(\mathrm{rms})$ and has a frequency of 60 Hz . The diodes have $\mathrm{V}_{\mathrm{DO}}=0.7 \mathrm{~V}$ each.

Figure 3
(a) What will be the value of the filter capacitor C so that the ripple voltage is limited to below 500 mV peak-to-peak?
(b) What is the DC voltage at the output of the system?
(c) What is the conduction angle for each diode in the system? Explain with appropriate sketches.
Q.4: For the BJT circuit (Figure 4), the signal source generates ac signal with zero DC. The transistor has $\beta=100$, and $\mathrm{r}_{\mathrm{o}}=20 \mathrm{k} \Omega$.
(a) Find R_{E} to establish a DC current of $I_{E}=0.5 \mathrm{~mA}$. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ for conduction.
(b) Find R_{C} to obtain $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.
(c) Determine the system voltage gain with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,

Figure 4:
Q.5: Consider the emitter-degenerated CE BJT amplifier circuit shown below. The signal source has a resistance $R_{s}=1 \mathrm{k} \Omega$ and the load R_{L} is $5 \mathrm{k} \Omega$.

Given $V_{A}=$ infinity, $\beta=100, I_{E}=2 \mathrm{~mA}$.
(a) What value of R_{E} will make $\mathrm{R}_{\text {in }}=10 \mathrm{k} \Omega$?
(b) With the above value of R_{E}, what will be the overall voltage gain $v_{d} v_{i}$ of the system?
(c) If R_{E} is by-passed by a large capacitance (negligible reactance), what voltage gain can be obtained?

Figure 5:
Q.6: For the circuit shown (Figure 6)
(a) Draw the ac equivalent circuit for the amplifier.
(b) Find the voltage gain $\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\text {sig }}$. Assume that the source provides a small signal $\mathrm{v}_{\text {sig }}$ with zero DC., and that $\beta=100$.
(c)What will be the maximum $\mathrm{v}_{\text {sig }}$ value for which the small signal approximation will remain valid?

Figure 6:
Q.7: Consider the MOSFET amplifier in the figure below. Given that $V_{G}=4 V V_{D D}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=1$ $\mathrm{k} \Omega$. The transistor has $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$, and $k_{n}{ }^{\prime}(W / L)=5 \mathrm{~mA} / \mathrm{V}^{2}$.
(a) Find the bias current I_{D} through the MOS device.
(b) What will be the voltage gain $\mathbf{v}_{\mathbf{o}} / \mathrm{v}_{\mathrm{sig}}$, if $\mathrm{R}_{\mathrm{D}}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G} 1}=2 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 2}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{sig}}=10 \mathrm{k} \Omega$?

Figure 7:

Some important Formulas (BJT \& MOSFET)

Model Parameters in Terms of DC Bias Currents
$g_{m}=\frac{I_{C}}{V_{T}} \quad r_{e}=\frac{V_{T}}{I_{E}}=\alpha\left(\frac{V_{T}}{I_{C}}\right) \quad r_{\pi}=\frac{V_{T}}{I_{B}}=\beta\left(\frac{V_{T}}{I_{C}}\right) \quad r_{o}=\frac{\left|V_{A}\right|}{I_{C}}$
In Terms of g_{m}
$r_{e}=\frac{\alpha}{g_{m}} \quad r_{\pi}=\frac{\beta}{g_{m}}$
In Terms of r_{e}

$$
g_{m}=\frac{\alpha}{r_{e}} \quad r_{\pi}=(\beta+1) r_{e} \quad g_{m}+\frac{1}{r_{\pi}}=\frac{1}{r_{e}}
$$

Relationships Between α and β
$\beta=\frac{\alpha}{1-\alpha} \quad \alpha=\frac{\beta}{\beta+1} \quad \beta+1=\frac{1}{1-\alpha}$

Overdrive voltage:

$$
\begin{aligned}
& v_{O V}=v_{G S}-V_{t} \\
& v_{G S}=V_{t}+v_{O V}
\end{aligned}
$$

Operation in the triode region:

- Conditions:
(1) $v_{G S} \geq V_{1} \Leftrightarrow v_{\text {OV }} \geq 0$
(2) $v_{G D} \geq V_{1} \Leftrightarrow v_{D S} \leq v_{G S}-V_{1} \Leftrightarrow v_{D S} \leq v_{O V}$
- $i-v$ Characteristics:
$i_{D}=\mu_{n} C_{a x} \frac{W}{L}\left[\left(v_{G S}-v_{t}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]$
- For $v_{D S} \ll 2\left(v_{G S}-V_{t}\right) \Leftrightarrow v_{D S} \ll 2 v_{O V}$
$r_{D S} \equiv \frac{v_{D S}}{i_{D}}=1 /\left[\mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t}\right)\right]$
Operation in the saturation region:
- Conditions:
(1) $v_{G S} \geq V_{t} \Leftrightarrow v_{O V} \geq 0$
(2) $v_{G D} \leq V_{t} \Leftrightarrow v_{D S} \geq v_{G S}-v_{t} \Leftrightarrow v_{D S} \geq v_{O V}$
- $i-v$ Characteristics:
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}\left(1+\lambda v_{D S}\right)$
- Transconductance:

$$
g_{m}=\mu_{n} C_{o x} \frac{W}{L} V_{o v}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{o v}}
$$

- Output resistance:

$$
r_{0}=V_{A} / I_{D}=1 / \lambda I_{D}
$$

Students are allowed to use ENCS faculty approved calculators
Special Instructions:
You MUST attempt Q. 1 (soft skill component) .
For Q.2-Q.8, answer any FIVE questions.
Before submitting your answer book, fill in the Table below indicating the answers you want to be graded.
If you do not fill in the Table, the instructor will mark your answers as they appear one after another in the answer book

Show all steps clearly in neat and legible handwriting.
Students are required to return the question paper together with exam booklet(s).

Table (Do not forget to fill in!)

Answers to be graded	Q.1 (compulsory)					
Marks						

(Soft skill component- The student MUST answer this question)

Q.1: Figure 1 depicts two NMOS transistors each with $V_{T H N}=0.5 \mathrm{~V}, K_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$, and W/L ratio of 4. The early voltage for M2 can be assumed to be infinity.

Figure 1
(a) Design R_{1} so that $\mathrm{V}_{\mathrm{G}}=0.7 \mathrm{~V}$.
(b) Find R_{2} so that M 1 will be just at the edge of saturation region.
(c) What will be the current in M1 if it has an early voltage of 50 V ?

(Answer any FIVE questions)

Q.2: A semiconductor junction diode \mathbf{D} is used in an automatic gain control system as shown in figure 2. The ac resistance of the diode is dependent on the amplitude V_{p} of the input signal. The capacitance acts as a short circuit and the inductor acts as an open circuit for the ac signal.

The input signal is full-wave rectified to generate a DC voltage which drives the DC current through the diode. This DC voltage is given by $2 V_{p} / \pi$. The diode is a 1 mA diode. The voltage drop across the diode changes by 100 milli volts for a decade (10 times) change in current through it. For the diode you may use the relation: $V_{2}=V_{1}+2.303 n V_{T} \log _{10}\left(I_{2} / I_{1}\right)$, where V_{T} is the thermal voltage $(=25 \mathrm{mV})$. The DC resistance of the diode can be neglected.

If the input ac signal has a peak amplitude of 10 volts, what will be the output signal magnitude v_{o} ?

Figure 2
Q.3: The bridge-rectifier circuit in figure 3 with a filter capacitor has $R_{L}=200$ ohms. The secondary transformer delivers a sinusoid of 15 V (rms) and has a frequency of 60 Hz . The diodes have $\mathrm{V}_{\mathrm{D}}=0.8 \mathrm{~V}$ each.
(a) What will be the value of the filter capacitor so that the ripple voltage is limited to below 0.5 volts peak-to-peak?
(b) What is the DC voltage at the output of the system?
(c) What should be the PIV rating for the diodes?

Figure 3
Q.4: Calculate the small signal gain v_{o} / v_{s} for the BJT amplifier circuit in figure 4. Assume transistor parameters of $\beta=80, \mathrm{~V}_{\mathrm{BE}}(\mathrm{on})=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=50 \mathrm{~V}$.

Figure 4
Q.5: Design (i.e., design the resistor values) a bias-stable PNP-BJT amplifier stage of figure 5 to meet the following specifications.

The transistor Q-point values are to be: $\mathrm{V}_{\mathrm{ECQ}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}} \approx 0.5 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{RE}} \approx 2 \mathrm{~V}$. Assume transistor parameters of $\beta=99$ and $\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})=0.7 \mathrm{~V}$.

Figure 5
Find R_{1}, R_{2}, R_{E}, and R_{C}.
Q.6: For the circuit shown in figure 6 find
(a) the input resistance $\mathrm{R}_{\text {in }}$, and
(b) the voltage gain v_{o} / v_{s}. Assume that the source provides a small signal $\mathrm{v}_{\text {sig }}$ and that $\beta=100$.
(c) What will be the maximum v_{s} value for which the small signal approximation will remain valid?

Figure 6
Q.7: A Common Source (CS) MOSFET amplifier is biased at $I_{D}=0.25 \mathrm{~mA}$ with a current source connected at the Source terminal of the MOSFET. The transistor has $V_{O V}=0.3 \mathrm{~V}$, and a drain resistance of $R_{D}=15 \mathrm{k} \Omega$ connected to the DC supply of 15 V . The device has $V_{A}=50 \mathrm{~V}$. The amplifier is capacitively fed from a source with internal resistance $R_{\text {sig }}=100 \mathrm{k} \Omega$, and a 20 $\mathrm{k} \Omega$ load is capacitively coupled to the drain of the amplifier.
(a) Draw the schematic for the amplifier system.
(b) Calculate the voltage gain of the system.
Q.8: Consider figure 8. Calculate the labeled node voltages V_{1} and V_{2}, given that the MOSFETs have $\mathrm{V}_{\text {THN }}=1 \mathrm{~V}$, and $K_{n} \frac{W}{L}=3 \mathrm{~mA} / \mathrm{V}^{2}$.

Figure 8
(Some formulae and equivalent circuits)

$I_{C}=\beta I_{B}, I_{E}=(\beta+1) I_{B}$	$g_{m}=\frac{I_{C}}{V_{T}}, r_{\pi}=\frac{\beta}{g_{m}}, \alpha=\frac{\beta}{\beta+1}$	$\begin{array}{ll} r_{o}=\frac{V_{A}}{I_{C}}, & r_{e}=\frac{r_{\pi}}{\beta+1} \\ I_{C}=I_{S} \exp \left(V_{B E} / V_{T}\right) & \end{array}$
$I_{D}=k\left(\frac{W}{L}\right)\left(V_{\text {(linear region) }}^{\left.\left(V_{G S}-V_{t}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right)}\right.$	$I_{D}=k\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)$	$\begin{aligned} & g_{m}=k\left(\frac{W}{L}\right)\left(V_{G S}-V_{T H}\right)=\sqrt{\frac{2 k I_{D} W}{L}} \\ & r_{o}=\frac{V_{A}}{I_{D}} \end{aligned}$

(Some important formulae)

$I_{C}=\beta I_{B}, I_{E}=(\beta+1) I_{B}$	$g_{m}=\frac{I_{C}}{V_{T}}, r_{\pi}=\frac{\beta}{g_{m}}, \alpha=\frac{\beta}{\beta+1}$	$\begin{aligned} & r_{o}=\frac{V_{A}}{I_{C}}, r_{e}=\frac{r_{\pi}}{\beta+1} \\ & I_{C}=I_{S} \exp \left(V_{B E} / V_{T}\right) \end{aligned}$
$\begin{gathered} I_{D}=K\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{t}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \\ \text { (linear region) } \end{gathered}$	$I_{D}=K\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{T H}\right)^{2}$ (saturation region, excluding Early effect)	$\begin{aligned} & g_{m}=K\left(\frac{W}{L}\right)\left(V_{G s}-V_{T H}\right)=\sqrt{\frac{2 K I_{D} W}{L}} \\ & r_{o}=\frac{V_{A}}{I_{D}} \end{aligned}$

Section I (Compulsory): Soft skill component- The student MUST answer this question
Q. 1: The NMOS transistor in the circuit of Figure 1 have $V_{T H N}=1 \mathrm{~V}, K=120$ $\mu \mathrm{A} / \mathrm{V}^{2}, \lambda=0$, and $L_{1}=L_{2}=L_{3}=1.5 \mu \mathrm{~m}$. Find the required values of gate width for each of M_{1}, M_{2}, and M_{3} to obtain the voltage and current values indicated. (6 marks).

Figure 1:

Section II (From Q.2-6, answer ONLY three questions)

Q.2: The current-voltage relationship of a diode is given by

$$
i_{D}=I_{S} e^{\frac{v_{D}}{V_{T}}}
$$

where I_{s} is the scale current of the diode,
V_{T} is the thermal voltage $=25 \mathrm{mV}$ at room temperature,
v_{D} is the voltage across the diode.
(a) What is the mA rating of the diode, given $I_{S}=10^{-15}$ amperes?
(b) Assuming that $\mathrm{V}_{\mathrm{i}}=0.7 \mathrm{~V}$ and $v_{s}=0.05 \mathrm{Sin}(360 \mathrm{t})$ are applied to the diode (see Fig.2), draw the corresponding (i) DC model and (ii) the $a c$ model of the diode.
(c) Using the above equivalent circuits, obtain the output voltage across the diode configured as in Fig.2.

Figure 2:
Q.3: . Figure 3 shows an electronic amplifier employing a power npn BJT device.

Figure 3:
It is given that $\mathrm{V}_{\mathrm{BB}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=80 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=10,000$ ohms, $\mathrm{R}_{\mathrm{C}}=5000$ ohms, $\mathrm{R}_{\mathrm{E}}=10,000$ ohms, $\mathrm{C} \rightarrow \infty$ and β of the transistor is 29 .
(a) Verify that the transistor is in the active region.
(b) Draw the $a c$ equivalent circuit, given $\mathrm{V}_{\mathrm{A}}=200 \mathrm{~V}$. Label the calculated $a c$ parameters.
(8 marks)
Q.4(a) Figure 4(a) shows a half-wave rectifier circuit. The diode D can be considered ideal.

Figure 4(a):
The system data are: $\mathrm{v}_{\mathrm{s}}(\mathrm{t})=60 \operatorname{Cos}[(120 \pi \mathrm{t})]$ Volts and $\mathrm{R}_{\mathrm{L}}=100$ kilo ohms.
(i) Obtain the DC component of $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$
(ii) What is the peak inverse voltage across the diode?
(b) In the system shown in Fig.4(a), a capacitor of value $10 \mu \mathrm{~F}$ is connected across R_{L}, as shown in Fig.4(b).

Figure 4(b):

(i) Sketch the waveform of $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ and label the various values. Find the ripple voltage.
(ii) Determine the DC component of $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$.
(iii) What is the peak inverse voltage across the diode?
(iv) What should be the new value of C, if the ripple found in (i) is to be reduced to half the value?
(8 marks)
Q.5: Figure 5 shows a MOSFET circuit.

Figure 5:
The various component values are given by: $\mathrm{R}_{1}=200$ kilo ohms, $\mathrm{R}_{2}=150$ kilo ohms, $\mathrm{R}_{\mathrm{D}}=6$ kilo ohms, $\mathrm{R}_{\mathrm{S}}=4.5$ kilo ohms, $\mathrm{V}_{\mathrm{DD}}=10$ volts. For the transistor, $\mathrm{K}=200 \mu \mathrm{~A} / \mathrm{V}^{2},(\mathrm{~W} / \mathrm{L})=5$, $\mathrm{V}_{\mathrm{GS}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{THN}}=0.7 \mathrm{~V}$.
(a) Verify that the MOSFET is in the saturation region.
(b) Draw the complete ac equivalent circuit of Fig. 5.

(8 marks)

Q.6: For the circuit shown in figure 6 assume that the source v_{s} provides a small signal $\mathrm{v}_{\text {sig }}$ and that the BJT has $\beta=100$.

Find:
(a) the input resistance $\mathrm{R}_{\text {in }}$.
(b) What will be the maximum v_{s} value for which the small signal approximation will remain valid?

(8 marks)

Figure 6:

Section III (From Q.7-10, answer ONLY two questions)
Q.7: Design (i.e., design the resistor values) a bias-stable PNP-BJT amplifier stage of figure 7 to meet the following specifications.

The transistor Q-point values are to be: $\mathrm{V}_{\mathrm{ECQ}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}} \approx 0.5 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{RE}} \approx 2 \mathrm{~V}$. Assume transistor parameters of $\beta=99$ and $\mathrm{V}_{\mathrm{EB}}(\mathrm{ON})=0.7 \mathrm{~V}$.
(10 marks)

Figure 7:
Q.8: Consider the emitter-degenerated CE BJT amplifier circuit shown in figure 8. The signal source has a resistance $R_{s}=1 \mathrm{k} \Omega$ and the load R_{L} is $5 \mathrm{k} \Omega$.

Given $V_{A}=$ infinity, $\beta=100, I_{E}=2 \mathrm{~mA}$.
(a) What value of R_{E} will make $\mathrm{R}_{\text {in }}=10 \mathrm{k} \Omega$?
(b) With the above value of R_{E}, what will be the overall voltage gain $v_{o} v_{i}$ of the system?
(c) If R_{E} is by-passed by a large capacitance (negligible reactance), what voltage gain can be obtained?
(10 marks)

Figure 8:

Q.9: A Common Drain (CD) MOSFET amplifier is biased at $I_{D}=0.25 \mathrm{~mA}$ with a current source connected at the Source terminal of the MOSFET. The transistor has $V_{O V}=0.3 \mathrm{~V}$, and a load resistance of $15 \mathrm{k} \Omega$ is connected to the source terminal via a coupling capacitance of infinite value. The device has V_{A} $=50 \mathrm{~V}$. The amplifier is fed from a source with internal resistance $R_{s i g}=100 \mathrm{k} \Omega$ via a coupling capacitor of infinite value.
(a) Draw the schematic diagram for the amplifier system.
(b) Calculate the voltage gain of the system.
(10 marks)
Q.10: Figure 10 presents a Common Gate MOS amplifier as an integrated circuit. The transistor M0 provides a bias current of 0.5 mA . The output resistance of M0 can be assumed as infinity. Assume that for M2, $K_{P}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, and for M1, $K_{n}=300 \mu \mathrm{~A} / \mathrm{V}^{2}$. Further, for M2, $V_{A p}=-40 \mathrm{~V}$, and for M1, $V_{A n}=30$ V . Given that $V_{T H N}=\left|-V_{T H P}\right|=1 \mathrm{~V}$, and $W / L=2$ for all the transistors. The body transconductance $g_{m b}$ of M1 can be ignored.

M 1 is the driver transistor, and M2 serves as the active load. $\mathrm{V}_{\mathrm{DD}}=\left|-\mathrm{V}_{\mathrm{SS}}\right|=10 \mathrm{~V}$.
Draw the $a c$ equivalent circuit, and then find the voltage gain $v_{o} / v_{i n}$ for the amplifier.
(10 marks)

Figure 10:

