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CHAPTER 3 

Frequency Response of Basic BJT and MOSFET Amplifiers 

(Review materials in Appendices III and V) 
 

In this chapter you will learn about the general form of the frequency domain transfer 

function of an amplifier. You will learn to analyze the amplifier equivalent circuit and 

determine the critical frequencies that limit the response at low and high frequencies. You 

will learn some special techniques to determine these frequencies. BJT and MOSFET 

amplifiers will be considered. You will also learn the concepts that are pursued to design 

a wide band width amplifier. Following topics will be considered. 

 Review of Bode plot technique. 

 Ways to write the transfer (i.e., gain) functions to show frequency dependence. 

 Band-width limiting at low frequencies (i.e., DC to fL). Determination of lower 

band cut-off frequency for a single-stage amplifier – short circuit time constant 

technique. 

 Band-width limiting at high frequencies for a single-stage amplifier. 

Determination of upper band cut-off frequency- several alternative techniques. 

 Frequency response of a single device (BJT, MOSFET). 

 Concepts related to wide-band amplifier design – BJT and MOSFET examples. 

 

3.1 A short review on Bode plot technique  

 

Example: Produce the Bode plots for the magnitude and phase of the transfer function 

2 5
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( )

(1 /10 )(1 /10 )
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T s

s s


 
, for frequencies between 1 rad/sec to 106 rad/sec. 

 

We first observe that the function has zeros and poles in the numerical sequence 0 (zero), 

102 (pole), and 105 (pole). Further at ω=1 rad/sec i.e., lot less than the first pole (at ω=102
 

rad/sec), ( ) 10T s s . Hence the first portion of the plot will follow the asymptotic line 

rising at 6 dB/octave, or 20 dB/decade, in the neighborhood of ω=1 rad/sec. The 

magnitude of T(s)  in decibels will be approximately  20 dB at ω= 1 rad/sec. 
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The second asymptotic line will commence at the pole of ω=102 rad/sec, running at -6 

dB/octave slope relative to the previous asymptote. Thus the overall asymptote will be a 

line of slope zero, i.e., a line parallel to the ω- axis. 

 

The third asymptote will commence at the pole ω=105 rad/sec, running at -6 dB/Octave 

slope relative to the previous asymptote. The overall asymptote will be a line dropping 

off at -6 dB/octave beginning from ω=105 rad/sec. 

 

Since we have covered all the poles and zeros, we need not work on sketching any further 

asymptotes. The three asymptotic lines are now sketched as shown in figure 3.1. 

 

Figure 3.1: The asymptotic line plots for the T(s). 

 

The actual plot will follow the asymptotic lines being 3 dB below the first corner point 

(i.e.,at ω=100)i.e., 57 dB ,and 3 dB below the second corner point (i.e., ω=10^5), i.e. 57 

dB. In between the two corner point the plot will approach the asymptotic line of constant 

value 60 dB. The magnitude plot is shown in figure 3.2. 

Asymptote 
lines 
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Figure 3.2:Bode magnitude plot for T(s) 

 

For phase plot, we note that the ‘s’ in the numerator will give a constant phase shift of 

+90o degrees (since 0 ,s j j    angle: 1 1tan ( / 0) tan ( ) 90o    ), while the 

terms in the denominator will produce angles of 1 2tan ( /10 ) , and 1 5tan ( /10 )  

respectively. The total phase angle will then be: 

 

1 2 1 5( ) 90 tan ( /10 ) tan ( /10 )o         (3.1) 

 

Thus at low frequency (<< 100 rad/sec), the phase angle will be close to 90o. Near the 

pole frequency ω=100, a -45o will be added due to the pole at making the phase angle to 

be close to +45o. The phase angle will progressively decrease, because of the first two 

terms in φ(ω). Near the second pole ω=105, the phase angle will approach  

 

1 5 2 1 5 5( ) 90 tan (10 /10 ) tan (10 /10 ) 90 90 45o o o o          i.e., -45o degrees. 

 

(The student in encouraged to draw the curve) 

 

3.2 Simplified form of the gain function of an amplifier revealing the frequency response 

limitation 

 

Magnitude 
plot (heavier 
line) 
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3.2.1 Gain function at low frequencies 

Electronic amplifiers are limited in frequency response in that the response magnitude 

falls off from a constant mid-band value to lower values both at frequencies below and 

above an intermediate range (the mid-band) of frequencies. A typical frequency response 

curve of an amplifier system appears as in figure3.3. 

 

Figure 3.3: Typical frequency response function magnitude plot for an electronic 

amplifier 

 

Using the concepts of Bode magnitude plot technique, we can approximate the low-

frequency portion of the sketch above by an expression of the form 
as

Ks
sTL 
)( , or 

sa

K
sTL /1
)(


 . In this K  and a are constants and s=jω, where ω is the (physical, i.e., 

measurable) angular frequency (in rad/sec).  In either case, when the signal frequency is 

very much smaller than the pole frequency ‘a’, the response TL(s) takes the form aKs / . 

This function increases progressively with the frequency js  , following the 

asymptotic line with a slope of +6 dB per octave. At the pole frequency ‘a’, the response 

will be 3 dB below the previous asymptotic line, and henceforth follow an asymptotic 

line of slope (-6+6=0) of zero dB/ octave. Thus TL(s) will remain constant with 

frequency, assuming the mid-band value. Note that TL(s) is a first order function in ‘s’ (a 

single time-constant function). 
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The frequency at which the magnitude plot reaches 3 dB below the mid-band (i.e., the flat 

portion of the magnitude response curve) gain value is known as the -3 dB frequency of 

the gain function. For the low-frequency segment (i.e., TL(s)) of the magnitude plot this 

will be designated by fL (or ωL =2π fL). 

 

In a practical case the function TL(s) may have several poles and zeros at low frequencies. 

The pole which is closest to the flat mid-band value is known as the low frequency 

dominant pole of the system. Thus it is the pole of highest magnitude among all the poles 

and zeros at low frequencies. Numerically the dominant pole differs from the -3 dB 

frequency. But for simplicity, one can approximate dominant pole to be of same value as 

the -3dB frequency. The -3dB frequency at low frequencies is also sometimes referred to 

as the lower cut-off frequency of the amplifier system. 

 

The frequency response limitation at low frequency occurs because of coupling and by-

pass capacitors used in the amplifier circuit. For single-stage amplifiers, i.e., CE, 

CB..CS,CG amplifiers these capacitors come in series with the signal path (i.e., they form 

a loop in the signal path), and hence impedes the flow of signal coupled to the internal 

nodes ( i.e., BE nodes of the BJT, GS nodes of the MOSFET) of the active device. The 

students can convince themselves by considering the simple illustration presented in 

figure 3.4. 
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Figure 3.4: Illustrating the formation of a zero in the voltage transfer function because of 

a capacitor in the signal loop. The controlling voltage vπ for the VCCS has a zero because 

of the presence of C1. 



Rabin Raut, Ph.D. Page 3.6 3/16/2013  

 

3.2.2 Gain function at high frequencies 

 

A similar scenario exists for the response at high frequencies. By considering the graph in 

Fig.3.3 at frequencies beyond (i.e., higher than) the mid-band segment, we can propose 

the form of the response function as: 
bs

K
sTH 
)( . K and b are constants. Other 

alternative forms are: 
bs

bK
sT o

H 
)( , or 

bs

K
sT o

H /1
)(


 . Note that in all cases, for 

frequencies << the pole frequency ‘b’, the response function assumes a constant value 

(i.e., the mid-band response). For TH(s), which is a first-order function,  the frequency b 

becomes the -3db frequency for high frequency response, or the upper cut-off frequency. 

When there are several poles and zeros in the high frequency range, the pole with the 

smallest magnitude and hence closest to the mid-band response zone is referred to as the 

high frequency dominant pole. Again, numerically the high frequency dominant pole will 

be different from the upper cut-off frequency. But in most practical cases, the difference 

is small. In case the high frequency response has several poles and zeros, one can 

formulate the function as 

1 2

1 2

(1 / )(1 / )..
( )

(1 / )(1 / )..
z z

H
p p

s s
T s

s s

 
 

 


 
  (3.2) 

In an integrated circuit scenario coupling or by-pass capacitors are absent. The frequency 

dependent gain function (i.e., transfer function) is produced because of the intrinsic 

capacitances (parasitic capacitances) of the devices. As a consequence the zeros occur at 

very high frequencies and only one of the poles fall in the signal frequency range of 

interest, with the other poles at substantially higher frequencies. Thus if 1p is the pole of 

smallest magnitude, the amplifier will have 1p as the dominant pole. In such case 

1

1

( ) p
H

p

T s
s







, and 1p will also be the -3 dB or upper cut-off frequency of the system. 

Otherwise, the -3 dB frequency H  can be calculated using the formula1 

                                                           
1 Sedra and Smith, “Microelectronic Circuits”, 6th edn., ch.9, p.722, Oxford University Press, ©2010. 
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  (3.3) 

 

3.2.3 Simplified (first order) form of the amplifier gain function 

Considering the discussions in sections 3.2.1-2 we can formulate the simplified form of 

the amplifier gain function can then be considered as  :  

A(s)=AM FL(s) FH(s)    (3.4) 

In (3.4), AM  is independent of frequency, FL has a frequency dependence of the form  

s/(s+wL), while FH has a frequency dependence of the form  wH/(s+wH). Thus for 

frequencies higher than wL and for frequencies lower than wH the gain is close to AM. 

This is a constant gain and the frequency band wH - wL is called the mid-band 

frequencies. So in the mid-band frequencies the gain is constant i.e., AM. At frequencies 

<< wL, FL(s) increases with frequency (re: Bode plot) by virtue of the ‘s’ in the 

numerator, at 6dB/octave. As the frequency increases, the rate of increase slows down 

and the Bode plot merges with the constant value AM shortly after w=wL. At w=wL the 

response falls 3 dB below the initial asymptotic line of slope 6dB/octave. Similarly, as 

frequency increases past wH , the response A(s) tends to fall off, passing through 3dB 

below AM (in dB) at w=wH  and then following the asymptotic line with slope  minus 

6dB/octave drawn at w=wH . It is of interest to be able to find out these two critical 

frequencies for basic single stage amplifiers implemented using BJT or MOSFET. 

 

3.3 Simplified high-frequency ac equivalent circuits for BJT and MOSFET devices 

 

It can be noted that for amplifiers implemented in integrated circuit technology only the 

upper cut-off frequency wH is of interest. To investigate this we must be familiar with the 

ac equivalent circuit of the transistor at high frequencies. The elements that affect the 

high frequency behavior are the parasitic capacitors that exist in a transistor. These arise 

because a transistor is made by laying down several semiconductor layers of different 

conductivity (i.e., p-type and n-type materials). At the junction of each pair of dissimilar 

layers, a capacitance is generated. We will consider the simplified high-frequency 

equivalent circuits for the BJT and MOSFET as shown in Figs.3.5-3.6. In these models 
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each transistor is assigned with only two parasitic capacitance associated with its internal 

nodes. These arise out of the semiconductor junctions that are involved in building the 

transistor. For the BJT, the base material produces a small resistance rx, which assumes 

importance for high (signal) frequency applications (signal processing). The models for 

N-type (i.e., NPN, NMOSFET) and P-type (i.e., PNP, PMOSFET) transistors are 

considered same.  In more advanced models (used in industries) more number of parasitic 

capacitances and resistances are employed. 

 

3.3.1 High frequency response characteristics of a BJT 

 

 

Xr

r C C v
g m or





v

 

Figure 3.5: Simplified ac equivalent circuit for a BJT device for high signal frequency 

situation. 

 

An important performance parameter of a BJT device is the small signal short circuit 

current gain of the device under CE mode of operation. Thus in Fig.3.5, if we insert an ac 

current source at terminal B and seek the ac short-circuit output current at node C, we can 

construct the CE ac equivalent circuit as in Fig.3.6. The short-circuit current gain io/ii of 

the device can be derived from the KCL equations (returning terminal C to ac ground) at 

the nodes B and B’. Writing gi =1/ri in general, we get 

 vsCsCggvgvvgi xBxBxi )(0),(   (3.5) 
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Figure 3.6: Configuring the BJT device for CE short-circuit current gain calculation. 

 

Solving for vπ and noting that at C node (which is short circuited for ac)  io = -

gmvπ+sCµvπ, we can finally derive the short-circuit current gain of the BJT under CE 

mode of operation as:  

)(

1
1

))((

)(
)(











CCr
sCC

sCg

CCsgg

gsCg
i

ish m

x

xm

i

o
fe










  (3.6) 

Eq.(3.6) represents a transfer function with a low-frequency (i.e., 0 ) value of hfe |low-

frequency = hfe(s)|s=jω=0 = -gmrπ =-β , the familiar symbol for the current gain of a BJT in CE 

operation. Because Cµ is very small, the zero of hfe(jω) i.e., gm/Cµ lies at very high 

frequencies. Using the symbol hfe (0) for low-frequency ( 0 ) value of hfe, and for 

frequencies << 


 C
gm

z  , the Bode magnitude plot of hfe appears as in Fig. 3.7.   

 T

)0(feh
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)0(feh
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Figure 3.7: The Bode magnitude plot of | hfe(jω) |. 
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It is observed that at the frequency )(
1


 CCr  , |hfe| drops to 

2
)0(feh

, i.e., -3db 

below hfe(0). This frequency is known as the β cut-off frequency for the BJT under CE 

mode of operation. 

At frequencies much higher than  , hfe(jω) changes as (see eq.(3.6)) 
)(  CCj

gm


 . 

This reaches a magnitude of unity (i.e. =1), at a frequency 

)( 
 CC

gm
T     (3.7) 

 This is known as the transition frequency of the BJT for operation as CE amplifier. The 

transition frequency TT f 2 is a very important parameter of the BJT for high-

frequency applications. For a given BJT, the high-frequency operational limit of the 

device can be increased by increasing ωT via an increase in gm , the ac transconductance 

of the BJT. This, however, implies an increase in the DC bias current (since gm = I/VT) 

and hence an increase in the DC power consumption of the system. Recalling the relation 

gmrπ =β+1, we can deduce that 

  ))0(1()1( feT h   (3.8) 

In real BJT devices  CCCCC   and, . Hence, the zero frequency 


 C
gm

z 

will be >> the transition frequency ωT. Since |hfe(jω)| becomes <1 beyond ωT, the zero 

frequency bears no practical interest. 

 

3.3.2 High frequency response characteristics of a MOSFET 
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Figure 3.8: Simplified ac equivalent circuit for a MOSFET device for high signal 

frequency situation. 

 

A simplified ac equivalent circuit for the MOSFET is shown in figure 3.8. The body 

terminal (B) for the MOSFET , and the associated parasitic capacitances as well as the 

body transconductance (gmb) have not been shown. By following a procedure similar to 

that of a BJT, it can be shown that the short circuit current gain of the MOSFET 

configured as a CS amplifier is given by 
)( gdgs

gdm

i

o

CCs

sCg
i

i



  which can be approximated 

as 
)( gdgs

m

i

o

CCs

g

i

i


  for frequencies well below the zero frequency gm/sCgd. 

Under the above assumption the frequency at which the magnitude of the current gain 

becomes unity i.e., the transition frequency, becomes: 

)( gdgs

m
T CC

g


    (3.9) 

The transition frequency of a MOSFET is a very important parameter for high frequency 

operation. This can be increased via an increase in gm with the attendant increase in the 

DC bias current and hence increase in DC power dissipation. 
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3.4 Calculation of ωL – the lower cut-off frequency (Short Circuit Time Constant method) 

Figure 3.9(a) depicts a typical CE-BJT amplifier with coupling capacitors C1, C3, and the 

by-pass capacitor CE. Each of these capacitors fall in the signal path for the operation of 

the amplifier and hence influences the voltage gain function in terms of introducing 

several poles and zeros in the gain transfer function. 

A simplified method to determine the poles is to consider only one of the capacitors 

effective at a time and assume that the other capacitors behave approximately as short 

circuits. Because only one capacitor is present in the system, it is easy to determine the 

time constant parameter of the associated ac equivalent circuit. Hence the method is 

known as short circuit time constant method (SCTC). Figures 3.9(b)-(d) show the three 

ac equivalent circuits under the assumption of only one of C1, C2, or CE  present in the 

circuit. The location(s) to be used for the calculation of the equivalent Thevenin 

resistance for each of the capacitors (C1, CE, C3) are shown in blue lines on the diagrams. 

The internal capacitances of the BJT offer very high impedance at low frequencies and 

hence they are considered as open circuits (so these are not shown). 
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Figure 3.9: (a) Schematic of a CE amplifier with four resistor biasing; (b) the ac 

equivalent circuit with CE ,C3 as short circuits; (c) the ac equivalent circuit with C1 ,C3 as 

short circuits, and (d) the ac equivalent circuit with CE ,C1 as short circuits.  

 

Analysis of the equivalent circuit in Fig.3.9(b) is straightforward. By inspection, the 

Thevenin resistance associated with C1 is )(|||| 211 rrRRRR xsigTh  , where the notation 

|| implies in parallel with. The associated time-constant is C1RTh1, and the corresponding 

pole-frequency is L1 = 1/(C1RTh1). Similarly, the Thevenin resistance  for C3 is 

LoCTh RrRR  ||3 (see Fig.3.9(d)). The corresponding pole-frequency is L3 = 1/(C3RTh3). 

The calculation of the Thevenin resistance associated with CE can be simplified 

considerably by assuming ro as inifinity. Then by inspection (see Fig.3.9(c)), 

)
1

||||
(|| 21

fe

sigx
EThE h

RRRrr
RR




  . The corresponding pole-frequency is LE = 1/(CERThE).  

A more adventurous student may discard the assumption of ro  infinity and proceed to set up a 3 

by 3 nodal admittance matrix (NAM) (see Appendix III) by using the substitutions 

Lccpsigspxp RRRRRRRrrr ||,||||, 21   , and by inserting a dummy current source ix at the 

node labeled as E in Fig. 3.9(c). The NAM will appear as 




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
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

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0

0

0  (3.10) 

In the above gE =1/RE,, gπp=1/rπp, go =1/ro, and so on, have been used. With the further 

assumption (it is very good if rx is << rπ) of EB VVv  , the matrix equation (3.10), becomes, 

after rearrangement (i.e., changing sides): 


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
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 (3.11) 

Then RThE is given by VE/ix. The result is (using Maple program code):  

cpspmcpspocppocpspposppcpspEospEcppEopE

cpospp
ThE ggggggggggggggggggggggggggg

gggg
R








 ))((

 

Now introducing the assumption go0 (i.e., ro infinity), one will get 
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cpspmcpsppcpspEcppE

cpspp
ThE gggggggggggg
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R








 )(
  (3.12) 

Substituting back in terms of the resistance notations, i.e., gE =1/RE,, gπp=1/rπp, go =1/ro, and so 

on, one can get 

EpmEpsp

Epsp
ThE RrgRrR

RrR
R










)(
    (3.13) 

Using gm rπp =hfe, and simplifying, one arrives at 
Efepsp

feEpsp
ThE RhrR

hRrR
R






)1/()(

)1/()(
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1
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(|| 21

fe

sigx
E h
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R



 . 

******** 

The overall lower -3 dB frequency is calculated approximately by the formula 

LELLL   31 . If out of the several poles of the low-frequency transfer function 

FL(s), one is very large compared to all other poles and zeros, the overall lower -3 dB 

frequency L  becomes   dominant pole (i.e., largest of L1 or LE or L3). 

If the numerical values of the various pole frequencies are known (by exact circuit 

analysis followed by numerical computation), the lower 3-dB frequency can be calculated 

approximately by a formula of the form  ...2
3

2
2

2
1  L where, ω1, ω2 , .. are the 

individual pole frequencies and the zero-frequencies are very small compared with the 

pole frequencies. 

 

Example 3.4.1: Consider the following values in a BJT amplifier. 

 Rsig =50, RB=R1||R2 = 10 k, r =2500, rx =25, hfe =100 and RE =1k, RC =1.5k, RL 

=3.3 k, VA =20 volts, IC  1 mA. Further,  C1 =1uF and CE= 10uF and C3 = 1uF. What 

is L ? 

According to above formulas, RTh1 = 2.05k , RThE =25.25 and RTh3 =1.39k+3.3k = 

4.69k. Then L1 = 487.8 rad/s, LE = 3.96E3 rad/sec and L3 = 213.2 rad/sec. Then , 

3661.431 ELLELL   rad/s, which is pretty close to LE.  
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Example 3.4.2: What if , L= 1800 rad/sec is to be designed? We can assume, for 

example, L1 = 0.8L, , ωLE= L2= 0.1L and L3=0.1L. Then, design the values of the 

capacitors C1, CE and C3. The student can try other relative allocations too. 

 

3.5: Calculation of ωH – the higher cut-off frequency  

 

Several alternative methods exist in the literature. The following are presented. 

 

3.5.1: Open circuit time-constant (OCTC) method  

 

This is similar to the case as with low frequency response. For high frequency operation, 

we are interested in the capacitor which will have lower reactance value since this 

capacitance will start to degrade the high frequency response sooner than the other. Thus, 

we can consider one capacitor at a time and assume that the other capacitors are too small 

and have reasonably high reactance values (for a C, the reactance is  1/C) so that they 

could be considered as open circuits. We then calculate the associated time constant. 

Thus the method is named as open circuit time constant (OCTC) method. We shall 

illustrate the method using the case of a CE BJT amplifier. 

 

Consider figure 3.10(a) which shows the ac equivalent circuit of the CE-BJT amplifier of 

Fig.3.9(a). The high frequency equivalent circuit for the BJT has been included. The 

coupling and by-pass capacitors are assumed as short circuits for high frequency 

situation.  
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Figure 3.10: (a) high frequency equivalent circuit of the amplifier in Fig.3.9(a); (b) the 

equivalent circuit with Cµ open; (c) the equivalent circuit with Cπ open. 

 

Case 1: C open 

The ac equivalent circuit to determine the Thevenin equivalent resistance RThπ across Cπ is 

shown in Fig.3.10(b). By simple inspection )||||(|| 21 RRRrrR sigxTh    

The high frequency pole due to this situation is H1 =1/(Cπ RThπ).  

 

Case 2: Cπ open 

 We now need to determine the Thevenin equivalent resistance RThµ across Cµ. The 

associated  equivalent circuit is shown in Fig.3.10(c). We can use a dummy signal current 

source ix and carry out few steps of basic circuit analysis (see Fig.3.11). 
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Figure 3.11: Equivalent circuit for calculating RThµ 

 

KCL at V1  node gives: 
Ssigx

SxS RRRRrr
GiGV 


 1

)||||(||

1
,0

21
1


 (3.13a) 

KCL at V2 node gives: 
LLCo

LLmx RRRr
GGVVgi  1

||||

1
,021  (3.13b) 

Solving (3.13(a),(b)) for V1 and V2 we can find RThµ =(V2-V1)/ix = Rs’+(1+gmRs’)RL’ 

 

The high frequency pole for C is H2 = 1/ CRThµ. 

 

When the two pole frequencies are comparable in values, the upper -3 dB frequency is 

given approximately by  )(
1

)(
1

21 
 

ThTh
H RCRC   (3.14) 

If, however, the two values are widely apart (say, by a factor of 5 or more), the upper -3 

dB frequency will be called as the dominant high frequency pole and will be equal to the 

lesser of H1 and H2. 

 

3.5.2: Application of Miller’s theorem  

 

This theorem helps simplifying the ac equivalent circuit of the BJT CE amplifier by 

removing the C capacitor, which runs between two floating nodes (i.e., between the base 

side to the collector side). In principle, if an admittance Y3 runs between nodes 1 and 2 

with Y1 at node 1 (to ground) and Y2 at node 2 (and ground) and if K is the voltage gain 

(V2/V1) between nodes 1 and 2, then Y3 can be split into two parts – one being in parallel 
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with Y1 with a value Y3 (1-K) and another becoming in parallel with Y2 with a value (1-

1/K)Y3. The theorem can be applied to all cases of floating elements connected between 

two nodes in a system. 

 

As a result of this principle, the high frequency equivalent circuit of the CE BJT amplifier 

(see Fig.3.5) simplifies to figure 3.12. 
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Figure 3.12: High frequency equivalent circuit of a CE-BJT device after application of 

Miller’s theorem 

 

In the above )11(),1( KCCKCCC   .  Figure 3.12 is a simple two node 

circuit and can be conveniently analyzed. Miller’s theorem is very effective when the 

admittances Y1 and Y2 have one of their ends grounded for ac signals. After the 

equivalent circuit is simplified as above, one can apply the OCTC method to determine 

the high frequency poles. 

 

Example 3.5.2.1: Consider Fig.3.13(a) which shows the high frequency equivalent circuit 

for the amplifier in Fig.3.9(a). Figure 3.13(b) is a reduced form of Fig.3.13(a), suitable 

for analysis by nodal matrix formulation. In Fig.3.13(b), the following expressions hold: 

2121 ||,,/,|||| RRR
RR

R
vvRviRRRrR B

Bsig

B
SSSSSsigXS 


  

(a) Calculate the low frequency voltage gain between nodes labeled 1 and 2 in 

Fig.3.13(b). This amounts to ignoring the presence of Cπ and Cµ for this 

calculation. Let this gain be K. 
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Figure 3.13: (a) high frequency equivalent circuit of the amplifier in Fig.3.9(a), (b) the 

equivalent circuit adjusted for nodal admittance matrix (NAM) analysis, (c) Transformed 

ac equivalent circuit after application of Miller’s theorem. 

 

(b) Use Miller’s theorem to find the new circuit configuration in the form of Fig.3.12. 

(c) Apply OCTC method to derive the pole frequencies for high frequency response 

of the amplifier. 

(d) Given that Rsig =50Ω, R1=82 kΩ, R2=47 kΩ, rX =10Ω, gm =40 m mhos, ro=50 kΩ, 

RC =2.7 kΩ, RL=4.7 kΩ, RE=270 Ω, hfe (0)=hFE= 49, Cπ =1.2 pF, Cµ =0.1 pF, find 

the high frequency poles by using 

(i) The OCTC method discussed in section 3.5.1. 

(ii) The OCTC method after applying Miller’s theorem (introduced in section 

3.5.2). 

Solution : 

By inspection of Fig.3.13(b), the voltage gain K=v2/v1= LCom RRrgv
v ||||2 


=-66.14  

Further, recalling gmrπ =hfe(0) =49, we get rπ =1225 Ω. 
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Part (c) : )||||(|| 21 RRRrrR sigxTh   =57.1 Ω. H1 =1/(Cπ RThπ) =14.59 910  rad/s 

RThµ = Rs’+(1+gmRs’)RL’ (see derivations in 3.5.1)=5503.5 Ω, H2 = 1/ CRThµ =1.817

910  rad/sec. The above is the result by OCTC method without taking recourse to 

Miller’s theorem. 

Part (b): Using Miller’s theorem the equivalent circuit of Fig.3.13(b) transform to figure 

3.13(c). Using K=-66.14, the new capacitance values become: 

1312 1001.1)11(,1093.7)1(   KCCKCCC   

Now, we need to recalculate the Thevenin resistances 571225||9.59||  STh RrR  Ω, 

1658||||  oLCTh rRRR  Ω. 

Then, 9
1 1021.21 




Th
H RC rad/sec, and 9

2 1094.51 



Th

H RC rad/sec. 

Part d(i): Since H2 is << H1, H2 is the dominant high-frequency pole for the 

amplifier. Hence the -3dB frequency is approximately 1.817 910  rad/sec, i.e., the 

dominant high frequency pole of the system. 

Part d(ii): Since the 1H , 2H  values are not widely apart (i.e., differ by a factor of 5 or 

more), we will estimate the higher  -3dB frequency by adopting the formula 

9106118.1
1








ThTh

H RCRC
 rad/sec. 

Part d(i) revised: If we had used the same formula with the values found in part (c), we 

would get 9106157.1
1








ThTh

H RCRC
rad/sec.  

Conclusion: In practice the more conservative value should be chosen, i.e., the upper -3 

dB frequency will be 9106118.1  rad/sec. 

 

3.5.3 Transfer function analysis method 

 

The time-constant methods discussed above lead to determination of the poles (and zeros) 

of the transfer function. We need yet to determine the mid-band gain function and 

combine this with the poles (and zeros) to form the overall transfer function for high (or 

low) frequency response of the amplifier. This involves a two-step process. Alternatively, 
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we can apply nodal matrix analysis (see Appendix III) technique to determine the overall 

transfer function as the first operation. Since the high frequency equivalent circuit of the 

transistor has two capacitors, the transfer function will be of order two in ‘s’ (i.e., second 

degree in ‘s’). For such a transfer function there exists a simple rule to determine the 

dominant pole of the transfer function. Further, by ignoring the frequency dependent 

terms (i.e., coefficients of s ) in the transfer function, we can derive the mid-band gain of 

the system. Hence the transfer function analysis opens up avenues for deriving several 

important network functions for the amplifier on hand. Following examples illustrate 

several cases.  

Example 3.5.3.1: Derivation of the voltage gain transfer function of a CE-BJT amplifier 

Consider the ac equivalent circuit of the BJT CE amplifier of Fig.3.9(a) which is re-

drawn in Fig.3.14(a) for convenience. Applying Thevenin-Norton equivalence principle 

to the left of the arrow-head (in blue), we can convert the circuit in Fig.3.14(a) to 
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Figure 3.14: (a) high frequency equivalent circuit of the complete amplifier, (b) the 

equivalent circuit adjusted for nodal admittance matrix (NAM) analysis. 

 

Fig.3.14(b), which is convenient for nodal analysis (i.e., it has fewer number of nodes and 

is driven by a current source. In Fig. 3.13(b) note that       

  2121 ||,,/,|||| RRR
RR

R
vvRviRRRrR B

Bsig

B
SSSSSsigXS 


  (3.15) 

Using the notations gS= 1/RS, gπ =1/rπ, RC’=RC||RL, Cg =1/RC’,and so on, we can formulate 

the admittance matrix for the two nodes (labeled as 1,2) system in Fig.3.13(b). Thus, 
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  (3.16) 
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Noting that vπ = V1, and bringing -gmvπ (=gmV1) on the left side inside the matrix,  






























0

)(

2

1 S

Com

S i

V

V

sCggsCg

sCCCsgg



   (3.17) 

The output signal voltage of the system is vo =V2, given by 

 2Vvo


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 (3.18) 

On carrying out the tasks of evaluation of the determinants, one can find

CoCSoSComCoSp

mS
o

ggggggggCgCgCgCgCgCgCgsCCs

sCgi
v
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Writing D(s) = 

CoCSoSComCoSp ggggggggCgCgCgCgCgCgCgsCCs   )(2 , 

and substituting for iS we find S
sigB

B

BsigX

m
o v

RR

R

RRrsD

sCg
v






||

1

)(
  (3.19) 

The voltage gain transfer function is: 
sigB
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BsigX
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||
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)(   (3.20) 

We can make two important derivations from the result in (3.20) 

 Low-frequency voltage gain AM : This is obtained from (3.20) on approximating 

ω0, i.e., s0.  

Thus 
))(||( sigBBsigX

B

CoCSoS

m
M RRRRr

R

gggggggg

g
A





  (3.21) 

Assuming the component and device parameter values as in Example 3.5.2.1, we get AM 

=-63.12  

 High frequency dominant pole ωHD  

When the denominator D(s) of the transfer function is of second order, one can estimate 

the dominant pole from the least valued root of the denominator polynomial. The 

technique is explained as follows. 

We can write D(s) in the form : s2 +bs + c. Then the high frequency dominant pole (i.e., 

the pole with the least magnitude of all the high frequency poles) is given by pD = c/b 
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i.e., the ratio of the constant term in D(s) to the coefficient of the s  term in D(s). This 

follows easily by writing 2 2( )( ) ( ) .s bs c s s s s              Then,

b     , if α<< β. Further, from αβ=c, we deduce bcc //   , as the dominant 

pole of the voltage gain transfer function. Hence,  

ωHD = /)( CoCSoS gggggggg   )(  CgCgCgCgCgCgCg ComCoS 

(3.22) 

 Consider the voltage gain function of the CE BJT amplifier in Example 3.5.2.1 as an 

illustration. We can find ωHD approximately by substituting the values for the pertinent 

parameters gS, go, and so on. Thus, the upper cut-off frequency (i.e., upper -3dB 

frequency) is calculated as 1.6158 910 rad/sec. The student may compare this value with 

the values obtained previously, i.e., 1.6157 910 rad/sec (using OCTC method), and 

1.6118 910 rad/sec (using Miller’s theorem followed by OCTC method), respectively. 

 

Example 3.5.3.2: Derivation of the voltage gain transfer function (VTF) of a CB-BJT 

amplifier 
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Figure 3.15: (a) Schematic of the CB-BJT amplifier stage, (b) the high-frequency 

equivalent circuit. 

 

Figures 3.15(a)-(b) depict respectively the schematic and high frequency equivalent 

circuits of the CB amplifier stage. All coupling and by-pass capacitors behave as short 

circuits and hence they do not appear in Fig.3.15(b). 
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For nodal admittance matrix (NAM) formulation we need to transform the voltage source 

with its internal resistance to its Norton equivalent, i.e., a signal current source iS=

sig

sig

R
v

in parallel with Rsig (the student is encouraged to complete this part to modify 

Fig.3.15(b)). The NAM by inspection will be: 
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But vπ = EB vv  . Hence (3.23) reduces to 
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 (3.24) 

In order to compare the performance of the CB and CE BJT amplifiers, it will be 

convenient to assume rX as negligible. Then node B’ will be at zero ac potential and 

(3.24) will approximate to (by discarding the row and column associated with the B’ 

node) 
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The VTF is given by 

 vo/vsig =vC/vsig =

)()()]()([

)(
2

 gggggggggggggggCggCsCCs
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omsig
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Using the VTF we can deduce 

 The mid-band gain (i.e., s jω, ω0) for CB mode of operation is: 

)()(
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|

 ggggggggggg

ggg
A

oEsigCmCEsigo

omsig
CBM 


   (3.26) 

 The dominant high frequency pole for CB mode of operation is 

 ωHD| CB=  
)()(

)()(

osigECo

oEsigCmCEsigo

ggggCggC

ggggggggggg
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  (3.27)   
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Example 3.5.3.3: Determine the mid-band gains and dominant high frequency poles of 

the BJT amplifier operated as CE (see Fig.3.9a) and CB (see Fig.3.15a) modes of 

operation. The devices, the DC biasing conditions, and the circuit components are 

assumed identical for both the configurations. 

[Given Rsig =50Ω, R1=82 kΩ, R2=47 kΩ, RE=270 Ω, RC =2.7 kΩ, RL=4.7 kΩ 

 gm =40 m mhos, ro=50 kΩ, rX =10Ω ,hfe(0)=hFE = 49 

Cπ =1.2 pF, Cµ =0.1 pF] 

On substitution into the expressions (3.26) and (3.27), we get: AM =57.17 v/v, 

ωHD|CB=4.5796 910  rad/sec. 

Note I: We observed that the CB-BJT amplifier has somewhat lower voltage gain (i.e., 

57.17) compared with that of CE-BJT (i.e., 63.12 in magnitude) amplifier, but has a 

higher high-frequency bandwidth (~ dominant high-frequency pole=4.5796 910  rad/sec) 

compared with that of CE-BJT (i.e., 1.6158 910 rad/sec) amplifier. 

Note II: It is known that the CE-BJT amplifier has moderate to high (kΩ to tens of kΩ) 

input resistance, as well as moderately high (kΩ) output resistance. In comparison, a CB-

BJT amplifier has low (Ω to tens of Ω) input resistance while a moderately high (kΩ) 

output resistance. 

Note III: A CB-BJT is preferred over a CE-BJT amplifier for most radio-frequency 

(MHz and above) applications because it has a higher high-frequency bandwidth (for 

identical device and biasing conditions), and affords to provide better impedance 

matching at the input with the radio-frequency (RF) source (Rsig in the range of 50Ω to 

75Ω). 

 

Example 3.5.3.4: Derivation of the voltage gain transfer function (VTF) of a CS-

MOSFET amplifier with active load 

Consider figures 3.16(a)-(b) which depict respectively the schematic of a CS-MOSFET 

amplifier and the associated high frequency equivalent circuit. 
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(a)                                           (b) 

Figure 3.16: (a) Schematic of a CS-MOSFET amplifier with active load, (b) associated 

high-frequency equivalent circuit. 

 

Using a dummy input current source ix (when not shown explicitly, the student should 

adopt this principle), the admittance matrix is  


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  (3.28) 

After re-arranging (the student is suggested to work out the details), we can find the VTF 

given by 
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Exercise 3.5.3.4: Can you sketch the Bode magnitude plot for the above VTF? Assume, 

gm=250 µA/V, ro1, ro2 =1 MΩ (each), Cgd1, Cgd2= 20 fF (each f femto i.e., 10-15), Cgs1= 

100 fF. 

 

Example 3.5.3.5: Derivation of the voltage gain transfer function (VTF) of a CG-

MOSFET amplifier. 

Figures 3.17(a)-(b) show the schematic diagrams of a CG-MOSFET amplifier (M1) 

under ideal loading and practical loading conditions respectively. Figure 3.17(c) depict 

the high frequency equivalent circuit. Note that now we need to include the body-  
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3gdC
3bdC

 

 

Figure 3.17: (a) Schematic of the CG-MOSFET amplifier with ideal load and bias source, 

(b) practical biasing and active load arrangement, (c) high-frequency equivalent circuit 

model for the CG-MOSFET stage, (d) more complete high-frequency model for a 

MOSFET. 

transconductance gmb of the MOSFET, since the topology is such (i.e., the amplifying 

device is in a totem pole connection) that the source and body terminals of the amplifying 

transistor M1 cannot be connected together! 

It may be noted that despite the complicated look of Fig.3.17(c), there are only two signal 

nodes in the equivalent circuit. Thus the nodal admittance matrix will appear as: 
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Writing C1=Cgs1+Cbs1, C2=Cgd1+Cbd1+Cgd2+Cbd2, and observing that the gate and body 

terminals of the MOSFETs are at zero ac potentials so that vgs1=-vs1=-vi, vbs1=-vs1=-vi, we 

can re-write the admittance matrix equation as 
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Re-arranging, we get 
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The VTF is given by: 



Rabin Raut, Ph.D. Page 3.29 3/16/2013  

221

1

111

11113

0

0

sCgg

gi

ggg

isCgggg

v

v

oo

ox

ombm

xmbmoo

i

o







      (3.32) 

Exercise 3.5.3.5-I: Find the explicit expression for the VTF using (3.32). 

Exercise 3.5.3.5-II: Using (3.31), and the knowledge that the driving point impedance 

(DPI) at the input is given by 
x

i
dpi i

vZ  , find the expression for the Zdpi. 

Exercise 3.5.3.5-III: Given that ,2.0,200,2,1 111231 mmbmooo ggmhogMrMrr    

fFCfFCfFCfFCfFCfFC bdgdbdgdbsgs 15,10,20,5,20,100 221111  find the 

expressions for the VTF and the Zdpi 

Exercise 3.5.3.5-IV: Find the expression for the trans-impedance function TIF  (=
x

o
i

v ) 

for the amplifier stage. 

 

Example 3.5.3.6: Derivation of the voltage gain transfer functions (VTF) for a CC-BJT 

and CD-MOSFET amplifiers 

 Figures 3.18(a)-(d) show respectively the schematic and high frequency equivalent 

circuits of a CC-BJT and CD-MOSFET amplifiers. The biasing/loading is arranged by  

 

2C

2gdC
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Figure 3.18: (a) Schematic of a CC-BJT amplifier, (b) high frequency equivalent circuit 

of the CC amplifier, (c) Schematic of a CD-MOSFET amplifier, (d) high frequency 

equivalent circuit of the CD amplifier 

 

employing active resistors (Q2 in Fig.3.18(a), and M2 in Fig.3.18(c)). It may be noted 

that since one terminal of the capacitor Cµ1 (and of Cgd1) is grounded for ac, neither of 

these capacitors are subjected to the Miller effect magnification, as are in the cases with 

CE (BJT and CS (MOSFET) amplifiers. 

 

The student is encouraged to complete the analysis and derive the expressions for the 

VTF  vo/vs of the CC and the CD amplifiers.Remember that for the MOSFET the body 

terminal is connected to a DC voltage. 

 

 

 

 

3.6: Wide band multi-stage amplifiers  

 

3.6.1: CE-CB Cascode BJT amplifier  

 

It has been known that a CE stage has high voltage gain and high input resistance while a 

CB stage has high voltage gain with low input resistance. For high frequency operation 

CE amplifier will have a smaller band width than the CB amplifier since in the former the 

capacitance C is magnified due to Miller effect. This has a corresponding effect on 

reducing the band width. In the CB stage, since the base is at ac ground, the capacitance 

C has already one terminal to ground and is not subjected to Miller effect magnification. 

So the CB stage affords to higher operating band width. 

 

It is interesting to consider a composite amplifier containing the CE and CB stages so that 

advantages of both the configurations could be shared. That is what happens in a cascode 

amplifier where the CE stage receives the input signal, while the CB stage acts as a low 



Rabin Raut, Ph.D. Page 3.31 3/16/2013  

resistance load for the CE stage. Because of the low resistance load, the Miller effect 

magnification of the C capacitor in the CE stage is drastically reduced. Because of the 

low resistance load, however, the voltage gain in the CE stage drops. But it is adequately 

compensated by the large voltage gain of the CB stage which works from a low input 

resistance to a high output resistance.  

 

3.6.1.1: Analysis for the bandwidth and mid-band gain 

 

The schematic connection of a cascode amplifier and the associated ac equivalent circuit 

are shown in Figures 3.19(a)-(b). The equivalent circuit has six nodes. Converting the 

signal source in series with Rsig and rX1 to its Norton equivalent will bring the number of 

nodes to four. For the common base transistor Q2 we can ignore rX2 as very small (~ 

zero). Thus the number of nodes reduces to three. These are labeled as nodes 1,2,3 in 

Fig.3.19(b). For quick hand analysis we can adopt the following simplification procedure. 

We can now introduce the assumption that ro2 is very large (infinity), and remove it. 

This separates node#2 and #3 with the controlled current source gm2vπ2 split into two 

parts- one running from node#3 to ground, and the other from ground to node#2.  
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Figure 3.19: (a) Schematic of a CE-CB cascode amplifier, (b) high frequency equivalent 

circuit. 

The simplified equivalent circuit appears in figure 3.20.  
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Figure 3.20: Simplified high frequency equivalent circuit for the CE-CB cascode 

amplifier. 

In Fig.3.20 we have used 21111 ||,||)(  rrRrrRR ooXsigS  .  

A careful scrutiny of the controlled current source gm2vπ2 between ground to node #2 and 

the fact that the controlling voltage vπ2 is also effective across the same pair of nodes with 

the positive terminal at ground (node labeled 2B ) reveals that the controlled current 

source gm2vπ2 can be equivalently replaced by a conductance of gm2 (i.e., resistance 1/gm2) 

connected across node#2 and ground. This observation leads to the equivalent circuit 

shown in figure 3.21. 
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Figure 3.21: Conversion of Fig.3.20 after relocation of the controlled current source 

segments  gm2vπ2 each. 

Now we can apply the Miller effect magnification consideration to the floating capacitor 

Cµ1 running between nodes #1 and #2. The voltage gain between these nodes is (ignoring 

the feed-forward current through Cµ1 which is a very small capacitance) approximately 

given by the product of -gm1 and 1oR ||
2

1
mg . Considering the fact that 1oR = 221 ||  rrro  , 

and that 
2

2
1

mgr  , we can approximate 1oR ||
2

1
mg as 

2

1
mg . Hence the Miller 

magnification turns out to be 
2

1

m

m
g

gK  , which is very close to 1 when the 

transistors Q1 and Q2 are matched to each other. By the principle of Miller effect the 

floating capacitor Cµ1 can now be replaced by two grounded capacitor of value Cµ1(1-K) , 

i.e., 2 Cµ1 at node #1, and Cµ1(1-1/K), i.e., 2 Cµ1 at node#2. This leads to the final 

simplified form of the equivalent circuit as in figure 3.22. 
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Figure 3.22: Final simplified high frequency equivalent circuit for the cascode amplifier. 

Figure 3.22 present three disjoint sub-circuits with three distinct time constants. For 

Fig.3.22(a), the time constant is Sa RCC  )2( 11  . For Fig.3.22(b) and (c) the time 

constants are respectively, 
2

12
1

)2(
m

b g
CC   , and Cc RC 2  . The high frequency cut 

off (i.e., upper -3dB frequency) is 
cba

H 





1
, which can be considered as the 

bandwidth of the CE-CB cascode amplifier. 

 

The mid-band gain of the cascode amplifier can be obtained by ignoring all the capacitors 

(as open circuits) and considering the circuit in figure 3.23. 
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Figure 3.23: Equivalent circuit for the CE-CB cascode amplifier for mid-band (i.e., low 

frequency) gain calculation. 

 

By inspection, 
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The mid-band gain is then   C
Xsig

mM
s

o R
rrR

r
gA

v

v

11

1
1






   (3.34) 



Rabin Raut, Ph.D. Page 3.35 3/16/2013  

Exercise 3.6.1.1.1:Consider an NPN BJT device with hFE=100, fT=6000 MHz, Cπ= 25 pF 

biased to operate at IE= 1 mA. Given that rX=10 Ω, VA =50 V, and the signal source 

resistance Rsig =100 Ω. The load resistance RC is 2.7 kΩ. 

(a)The BJT is used as a CE amplifier with above given parameters. Find the mid-band 

gain AM , the upper cut-off frequency f-3dB, and hence the Gain-Bandwidth (GBW) of the 

amplifier (note: GBW=AM times f-3dB) 

(b)Two matched BJT devices with above specifications are used to construct a CE-CB 

cascode amplifier. Find the mid-band gain AM , the upper cut-off frequency f-3dB, and 

hence the Gain-Bandwidth (GBW) of the amplifier (note: GBW=AM times f-3dB). 

(c)How does the GBW|CE compare with the GBW|Cascode ? 

(Hint: the student need to first determine gm, rπ, ro, and Cµ for the BJT from the given 

information) 

Example 3.6.1.1.2: On using a typical BJT devices from SPICE simulation library, we get 

the following results: 

 

Amplifier mode CE CB CE-CB cascode 

Gain 61.1 15.1 63.8 

Band width 180.1MHz 793.5MHz 616.2MHz 

 

3.6.2 CS-CG MOSFET cascode amplifier 

It is easy to construct a cascode of CS-CG amplifier stages using MOSFET devices. The 

schematic and the high frequency equivalent circuit are shown in figures 3.24(a)-(b) 

respectively. I should be noted that the source terminals of transistors M1,M2 cannot be 

connected to the respective body (substrate) terminals and hence the associated parasitic  
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Figure 3.24: (a) Schematic of a CS-CG MOSFET cascode amplifier with active load and 

current source/mirror biasing, (b) high frequency equivalent circuit. 

 

capacitances need be considered. For M1, however, since the S and B terminals are both 

at ac ground, the capacitance Cbs is shorted out. 

The equivalent circuit in Fig.3.24(b) has three ungrounded nodes (shown in blue shaded 

circles). The voltage gain vo/vs can be calculated using standard nodal matrix formulation. 

Alternatively, the circuit can be simplified by adopting approximation procedures as used 

in the CS-CB cascode amplifier. This is left as an exercise to the interested students. 

Note that Miller magnification effect will be applicable to Cgd1. 

  

3.6.3: Wide band differential amplifier with BJT devices  

The cascode amplifier is single ended, i.e., has one terminal for signal input. It is of 

interest to investigate the possibility for a wide band differential amplifier. Towards this 

we can argue that a common differential amplifier with two CE stages accepting the 

differential input signals will not be desirable, because each CE stage will suffer 

degradation in high frequency performance because of Miller effect on C. In the 

following we discuss several possible configurations for wide-band differential amplifier. 



Rabin Raut, Ph.D. Page 3.37 3/16/2013  

3.6.3.1: CE-CB cascode doublet as wide band differential amplifier 

The CE-CB cascode amplifier  that we discussed already can be considered as a half 

circuit for constructing a differential amplifier. Figure 3.25 presents the schematic  
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Figure 3.25: CE-CB cascode doublet as wide band differential amplifier 

 

configuration.  The analysis of the gain bandwidth (GBW) can be carried out as in the 

CE-CB cascode amplifier by considering only one half circuit of the configuration. The 

differential amplifier will preserve all the merits of the parent CE-CB cascode in addition 

to providing the special features of a differential amplifier (i.e., common mode rejection, 

removing even harmonic components) 

 

3.6.3.2: CC-CB cascade doublet as wide band differential amplifier 

The Miller magnification in a CE stage could be entirely removed if RC were zero. But 

that implies a CC stage, which has a low voltage gain (less but close to 1). The loss in 

voltage gain can be compensated partially, by cascading the CC stage with a CB stage. 

But then we are getting a voltage gain only from one stage. By using the CC-CB cascade 
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as a half circuit, it is possible to develop a wide band CC-CB doublet differential 

amplifier. The schematic is shown in figure 3.26.  
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Figure 3.26: A CC-CB cascade doublet wide band differential amplifier. 

 

The amplifier in Fig.3.26 will provide wide band operation with good voltage gain. But 

there are four transistors which need be supplied with DC bias current. The DC power 

consumption will be high. A totem-pole configuration where two transistors are stacked 

in one column will result in a lower DC power consumption. This is possible by using 

complementary (i.e., NPN and PNP) transistors to form the CC-CB cascade. Figure 3.27 

presents the configuration. 

 

3.6.3.3: CC-CB cascade doublet differential amplifier with complementary transistors 

In the configuration of Fig.3.27 DC bias current is to be supplier only to two columns of 

transistors. So compared with Fig.3.26, the complementary CC-CB cascade doublet 

differential amplifier (Fig.3.27) will consume less DC power. 

 Analysis for gain bandwidth 

A simplified analysis for the band width of the differential amplifier can be carried out on 

the assumption that the NPN and the PNP transistors are matched pairs (it is seldom true 

in practice) and then working on one half circuit of the system. Thus considering the pair 
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Figure 3.27: Schematic of complementary CC-CB cascade doublet differential amplifier 

 

Q1,Q3 we can construct the high frequency equivalent circuit as shown in figure 3.28. 

We have ignored2 rx  and ro to further simplify the analysis. 

 

We can now rearrange the direction of the controlled current source in Q3 by reversing 

the direction of the controlling voltage vπ. This leads to figure 3.29(a). Figure 3.29(b) 

reveals further simplification by combining the two identical parallel Cπ , rπ circuits 

which occur in series connection. The current gmvπ coming toward and leaving from the 

node marked E1,E2 can be lifted off from this junction and has been shown as a single 

current gmvπ meeting the node C2. 

                                                           
2 A rule –of- thumb regarding such simplifications is: a resistance in series connection can be neglected as  
short circuit if it is small compared with other resistances. Similarly, a resistance in shunt connection can 
be neglected as an open circuit if it is high compared with other resistances. 
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Figure 3.28: Approximate high frequency equivalent circuit for the schematic in Fig.3.27. 

 

In Fig.3.29(b) we can see two disjoint circuits (shown by blue and olive green lines) with 

associated distinct time constants. The time constants are: 

)||2()
2

(1 sigRrC
C


  , and CRC 2 . The dominant high frequency pole is: 

21

1





H , which can be regarded as the band width of the amplifier. 
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Figure 3.29: Further simplification and compaction of the circuit in Fig.3.28. 

 

The student is suggested to construct the low-frequency form of the equivalent circuit in 

Fig.3.29(b) and find the expression for the mid-band gain AM. The gain bandwidth is then 

AM ωH. 
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3.6.4:Wide band amplifiers with MOSFET transistors 

 

Enhancement mode MOSFET can be connected in the same way as BJT stages to derive 

cascode and wide band differential amplifiers for high frequency applications. The 

analysis follows similarly. 

The student is encouraged to draw the schematics with MOSFET devices by following the 

corresponding BJT configurations in sections 3.6.3.1-3. 

 

3.7: Practice Exercises 

3.7.1: Show by appropriate analysis (KCL/KVL/Nodal matrix) that the voltage signal 

coupled across the internal base-emitter junction of a BJT (i.e., vπ) has a (a) zero at ω=0, 

when a voltage source signal is fed to the base of the BJT via a series capacitor, and (b) 

has a zero at a finite frequency when parallel R,C network is in series with the voltage 

source. Use the low-frequency equivalent circuit for the transistor. Consider the 

representative cases as shown below. 

 

 

3.7.2: For the BJT CE amplifier below, given RS=600 ohms, RB= 22 k ohms, hfe=99, IC=2 

mA, RE= 1.5 k ohms, RC=2.2 k ohms, RL=1 k ohms, C1 =1 μF, C2=25 μF, C3= 10 μF. 

What will be the lower -3dB frequency for the amplifier? 
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3.7.3: In a BJT, CE amplifier the network parameters are: RS= 100 ohms, RB=1 k ohms, 

rx= 50 ohms, IC= 1 mA, hfe= 99, Cπ=1.2 pF, Cμ=0.1 pF, VA=50 V, RC=1.5 k ohms. Find, 

 

(a) The time constants associated with the capacitors using open-circuit time constant 

method. 

(b) What is the approximate upper cut-off frequency? 

(c) In the equivalent circuit of the amplifier use Miller’s theorem assuming a gain of 

–gmRC between the internal collector and base terminals of the BJT, and re-draw 

the equivalent circuit. 

(d) Determine the pole frequencies in the equivalent circuit derived in step (c) above. 

(e) What will be the approximate upper cut-off frequency using the results in (d)? 

(f) Use the full transfer function determination method to the equivalent circuit of the 

CE amplifier and determine the pole frequencies using exact solution of D(s)=0, 

where the voltage gain function is : N(s)/D(s). 

(g) Determine the ‘dominant’ pole from the D(s) derived in step (f) above. 

(h) What are your estimates about the upper cut-off frequencies if you use the results 

in (f) and (g)? 

(i) Tabulate the upper cut-off frequency values obtained in steps (b), (e), (f), and (g). 
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3.7.4: In a MOSFET amplifier, you are given the following: RS=100 ohms, Cgs=0.1 pF, 

Cgd=20 fF, gm =50 μ mho, IDC=50 μA, VA=20 V, and RL= 5 k ohms. The MOSFET 

amplifier is configured to operate as CS amplifier. Find the dominant high-frequency 

pole of the amplifier using: 

 

(a) Miller’s theorem 

(b) Full nodal analysis 

(c) Open-circuit time constant method 

 

3.7.5: Consider a basic MOSFET current mirror circuit. Find an expression for the high 

frequency current transfer function io(s)/iin(s). Use the high frequency ac equivalent 

circuit model for the transistors. 

 

3.7.6: For the BJT amplifier shown below, determine the high frequency voltage gain 

transfer function in the form: ( ) H
M

H

A s A
s







. Given Cμ =0.5 pF, fT=600 MHz, hfe=49.   
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3.7.7: For the CD-CS cascade MOSFET composite amplifier, it is given that, VA=20 V, 

Cgs=0.5 pF, Cgd= 0.1 pF, IDC= 50(VGS- VTH)2 μA, VTH =1 V. Estimate fH for this amplifier 

system. The output resistance of each current source is 1 Mega ohms. 

 

 3.7.8: Find fH for the CS-CG cascade MOSFET amplifier system shown below. Use 

necessary data from problem # 3.7.7 above. 
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