Course		Number	Section
Electronics I I		ELEC 312	F
Examination	Date	Time	# of pages
Mid-Term Test	October 21, 2012	75 minutes	3
Dr. R. Raut			
Materials allowed: X No Calculators allowed: No	Yes (Please specify) X Yes		
NO formula sheet is allowed. ONLY ENCS approved calculator is allowed.			
Special Instructions: <u>Write your ID#</u> on the front page of your answer book Attempt <u>all questions</u> . Show all steps clearly in neat and legible handwriting. Students are required to <u>return question paper</u> together with exam booklet(s).			
****** Some useful formulae*****			
BJT: $r = \alpha/\alpha \alpha = I$	c_c/V_T $r_{\pi} = h_{ie}/g_m$ $h_{ie} = i_c/i_b$ $r_o = V_A/I_C$		
	$V_T = \frac{kT}{q} \approx 25mV \text{ at room temperature}$		
DIODE:	$I=I_s exp(v_{BE}/V_T)$		
MOSFET: $I_D = \mu C_{ox} \frac{W}{2L} (V_{GS} - V_{TH})^2$, (ignoring channel modulation effect, and assuming that the			
MOSFET is working in the saturation region)			
$g_m = \sqrt{\frac{2\mu C_{ox}W}{L}}$			

Q.1: Consider the amplifier in Figure 1, built with MOS transistors. The transistor M3 functions as an active load for the transistors M1 and M2. M1 is a common source stage while M2 is a common gate stage.

(a) Draw the small signal ac equivalent circuit for the system. Ignore the *body effect* for M2.

(b) Produce the nodal admittance matrix for the system with a goal to find the small signal voltage gain v_0/v_i . You <u>do not have to calculate</u> the voltage gain.

Figure 1:

Q.2: Figures 2(a)-(b) show the *schematics* of a basic and an improved current mirror respectively using MOSFET devices.

(a) Draw the pertinent *ac equivalent* circuits for the two circuits.

Figure 2:

Given (for all transistors), $\mu C_{ox} = 100 \ \mu \text{ A/V}^2$, W/L=10, $V_{SS} = -5 \text{ V}$, $V_{TH} = 0.8 \text{ V}$, $V_{DD} = 5 \text{ V}$, V_{GS} - $V_{TH} = 1 \text{ V}$, and $V_A=20 \text{ V}$. Approximate analysis gives the output resistance of the mirror in Fig.2(b) as $R_{out} = g_m r_o^2$, where r_o is the output resistance of each MOSFET device.

(b) Compare the numerical values of the output resistances of the mirrors in Figs. 2(a) and 2(b)

Q.3: The BJT differential amplifier in Figure 3 is supplied with a differential ac signal $v_D = v_1 - v_2$. The differential output signal is given by the expression

$$v_{o1} - v_{o2} = R_c I \left[\frac{\exp(-v_D / V_T)}{1 + \exp(-v_D / V_T)} - \frac{\exp(v_D / V_T)}{1 + \exp(v_D / V_T)} \right]$$

Where, V_T is the thermal voltage (~ 25 mV). The bias current I is arranged to be 5 mA

Determine the voltage gain $(v_{o1}-v_{02})/v_D$, when (i) $v_D=10$ mV and (ii) $v_D=1$ mV. How do these compare with the theoretical small signal voltage gain value of $|g_mR_C|$, where g_m is the trans-conductance of each BJT device, and R_C is the resistance at the collector.

Q.4. Figure 4 illustrates an implementation of a differential amplifier with active load using complementary BJT devices. The bias current I_{EE} is 2 mA. The early voltages are :

 V_{AN} (for NPN BJT) =25 V, V_{AP} (for PNP BJT)=50 V.

Figure 4:

- (a) Draw the ac equivalent circuit for the differential amplifier. Assume that the source I_{EE} has an *ac* resistance of R_I .
- (b) What will be the differential voltage gain V_{out}/(V_{in1} –V_{in2}) when V_{in1} and V_{in2} are *balanced differential* signals?

ELEC 312/2-F, Fall 2012, MT test sola. Q1. 1/7 (h) M3 has source and gate at DC (= 0 ac). So it acts on a current-source active lind = ros M2 has gate at DC. So the gm2 Ugs2 source becomes 9m2 (0-Vs2) = -9m2 Vs2 The ac equivalent aruit is: 203 U 0 - 52, DI 61 V: gmili Sola roj (b) This is a two node systeme with v; is input nade Since U; does not have any component attrehed, we will exclude it in formulating the radal admittance matrix (WAM). By inspection (God letting g=2) $\begin{array}{cccc} 9_{e_1} + 9_{e_2} & -9_{e_2} \\ \hline 9_{e_1} + 9_{e_2} & -9_{e_2} \\ \hline 9_{e_2} + 9_{e_3} \\ \hline 0_0 \end{array} \end{array} = \left[\begin{array}{c} -9_{m_1} \upsilon_1 - 9_{m_2} \upsilon_{s_2} \\ \hline 9_{m_2} \upsilon_{s_2} \\ \hline 9_{m_2} \upsilon_{s_2} \end{array} \right]$ But $v_{s_2} = v_1$. Substituting and moving on left side (ic. 9m2 Vsz = 9m2 Var > - 9m2 Var left) $\frac{1}{9}m_2 + \frac{1}{9}\sigma_1 + \frac{1}{9}\sigma_2 - \frac{9}{9}\sigma_2 + \frac{1}{9}\sigma_3 + \frac{1}{10}\sigma_1 + \frac{1}{9}\sigma_2 - \frac{9}{9}\sigma_2 + \frac{1}{9}\sigma_3 + \frac{1}{10}\sigma_1 + \frac{1}{10}$

217 2/6

02: For Fig. 2(2), it is a basic current mirror made from My, MS. Rout for MS is simply to y MS. No = VA, so IREF need be found out 02 Forma) AC equiv. County Fig 2k, mill be For (b), remembering IREF is a DC value ie zero'ac' The a equivalent circult will be IREF = O AC 63 a Rout $9_{m_3} V_{9s_3} V_{03} = 0 - U_{s_3} = - U_{s_3}$ y gmiVsz J'gmz Toz M2 > gate-drain Ver Connected diade Oac In & 2(b) we can use $g_m = g_{m_3} = g_{m_2} = g_{m_1}$ etc. IREF = MCox W (VGS-VTH) = 100 X 10 ×1 = 500 MA So r for all The MOSFET = VA/IREF = 20 KIL Y0 = 40 KN 9m = 2 M Gx W I Where ID = I OUT = IREF

317 Q2 (b) We take I out = I REF Since to specific data ((onti) are given to make any difference. The data set given implies all transistors are identical. So gm = J2X 100 X 10 X 500 + Given formula K K K MGX W ID=IREF=Iont = 1000 MJ = 1 milli mho 50 Rout for Fig 2(b) cinuit is = 1×10 × 40×10 × 90×10 So Rout = 1600 KR = 16 MR Comparison: Rout = $r_0 = 40 \text{ Kr}$ Rout / 20 = 16 Mr.

$$\frac{476}{(l_{3}^{2})^{2}} = \frac{9}{9\pi}R_{c} = \frac{1}{14} \cdot R_{c} = \frac{1}{2} \cdot \frac{1}{5\pi}R_{c} = \frac{2}{25\pi} \times 2000}{V_{T}}$$

$$\frac{9\pi}{8}R_{c} = 200 \quad v/v \rightarrow 5mell signel gain.$$
(i) Fm $V_{0} = 10 \text{ mv}$

$$\frac{2\pi}{9}\left(\frac{V_{0}/V_{T}}{V_{T}}\right) = enp\left(\frac{V_{0}/25}{2}\right) = 1.4918$$

$$\frac{2\pi}{9}\left(\frac{-V_{0}/V_{T}}{V_{T}}\right) = 0.6703$$

$$\frac{1}{1+enp}\left(\frac{V_{0}/V_{T}}{V_{T}}\right) = \frac{0.6703}{1+6703} = 0.401$$

$$\frac{enp}{1+enp}\left(\frac{V_{0}/V_{T}}{V_{T}}\right) = \frac{1.4918}{1+6703} = 0.5987$$

$$\frac{1}{1+exp}\left(\frac{V_{0}/V_{T}}{V_{0}}\right) = \frac{1.4918}{2.4918} = 0.5987$$

$$\frac{1}{1+exp}\left(\frac{V_{0}/V_{T}}{V_{0}}\right) = \frac{1.977}{2.4918}$$

$$\frac{1}{1+exp}\left(\frac{V_{0}/V_{T}}{V_{0}}\right) = \frac{1.977}{2.4918}$$

$$\frac{1}{1} = -1.9777$$

$$\frac{1}{10\pi} \frac{V_{0}}{V_{0}} = 1.87 \text{ my}$$

$$\frac{2\pi}{10\pi} \frac{V_{0}/V_{T}}{V_{0}} = 0.946$$

$$\frac{enp}{V_{0}/V_{T}} = 0.946$$

$$\frac{enp}{V_{0}/V_{T}} = 0.946$$

$$\frac{enp}{V_{0}/V_{T}} = \frac{1.64}{2.69} = 0.489$$

$$\frac{2\pi}{1+enp}\left(\frac{V_{0}/V_{T}}{V_{0}}\right) = \frac{1.64}{2.69} = 0.509$$

$$\frac{2\pi}{1+enp}\left(\frac{V_{0}/V_{T}}{V_{0}}\right) = 2.007$$

417 547

51747 Q3: Case Up=1mV No1-Voz = 2000 × 5×10 [0.489 - 1509] ront.) = - 0.2V $\frac{\operatorname{Genin} = - 0.2}{\operatorname{Imv}} = -200 \, \operatorname{vIv}.$ For No = Imv which is 24 VT, the gain 3 -200 exactly matches rich that given by The formula 19mRc | in magnitude. - 197.7 For ND = 10 mV which is & VT, the gain is very close to the theoretical value [3mRc] ? +200

04 Q3, Qy have emitters connected to DC (Va) and bases connected to DC (V,). These are functioning like current source active loads, (a) The ac equivalent incuit is: Yez Yoy Nint (9mi (Ving - Vp) 9m2(Uin = Up) rol RE LEE Source (b) When Vinz are balanced differential Signals, Up=0 (see lecture note derivation) Each half of the circuit behaves as a CE-BST ampli fier Vo1 = - 9m1 (Vin1) . To1 To3 Then Similarly Voz = - 9mg (Vinz) Yoz Yoy > Y 03 Assuming the BJTs are natched by pairs (ip. v_0) matched by pairs (ip. $v_1 v_0$) $v_2 = v_1 v_2$ $v_p v_0 t = v_0 - v_0$ $v_1 v_1 v_1 v_2$ Vinl 9mi Vinl = - gmn. Yon rop Ving + 9mn Yon Top Vinz

Q4 (Contd.) Note: roj=roz= Son roz=roy=rop Vout = Voy - Voz 9m1 = 9m2= 9mn = - 9mn Von Yop (Ving- Vinz) So Vout II Vint-Vinz = - 9mn. Von Vop In the above $\gamma_{01} = \gamma_{02} = \gamma_{0n}$, $\gamma_{03} = \gamma_{0y} = \gamma_{0p}$, 9m1 = 9m2 = 9mn From the given data: Ici= Ir2= 100/2 = 1mA Yap = VAR = 570 = 50 KM Von = Von = VAN = 2SV = 2SKVL 9mm = 1mA = 0.04 mpo Voltage gain = - .04 x 25Kn" SDKR = - 66667 V/V

7/7