Course		Number	Section
Electronics I I		ELEC 312	W
Examination	Date	Time	# of pages
Mid-Term Test Instructor(s)	February 17, 2012	45 minutes	3
Dr. R. Raut			
Materials allowed: X No Yes (Please specify) Calculators allowed: No X Yes			
NO formula sheet is allowed. ONLY ENCS approved calculator is allowed.			
Special Instructions:			
Write your ID# on the Attempt <u>all questions</u> . Show all steps clearly i Students are required t	front page of your answer book n neat and legible handwriting. to <u>return question paper</u> together w	vith exam booklet(s).	

****** Some useful formulae*********

BJTs

$$r_e = \alpha/g_m \quad g_m = I_C/V_T \quad r_\pi = h_{fe}/g_m \quad h_{fe} = i_c/i_b \quad r_o = V_A/I_C$$

 $\alpha = \frac{h_{fe}}{h_{fe} + 1} \quad V_T = \frac{kT}{q} \approx 25mV$ at room temperature

Diodes

 $I=I_s exp(v_{BE}/V_T)$

Q.1: Consider the basic current mirror in Figure 1. Design *R*, so that $I_0 = 2$ mA. Given $V_{CC}=5$ Volts, $\beta=100$, $I_{S2} = 10^{-14}$ Amp., $I_{S1} = 0.25 \times 10^{-14}$ Amp. I_S is the scale current (i.e., reverse saturation current for the respective EB junctions of the transistors).

Figure 1:

Q.2: The BJT differential amplifier in Fig.2 is supplied with a differential ac signal v_D = v_1 - v_2 . The differential output signal is given by the expression

$$v_{o1} - v_{o2} = R_c I \left[\frac{\exp(-v_D / V_T)}{1 + \exp(-v_D / V_T)} - \frac{\exp(v_D / V_T)}{1 + \exp(v_D / V_T)} \right]$$

Where V_T is the thermal voltage (~ 25 mV). The bias current *I* is arranged to be 2 mA

Calculate the voltage gain $(v_{o1}-v_{02})/v_D$, when (i) $v_D=30$ mV and (ii) $v_D=2$ mV. How do these compare with the theoretical small signal voltage gain value of $|g_m R_C|$, where g_m is the trans-conductance of each BJT device.

Figure 2:

Q.3: The following figure illustrates an implementation of a differential amplifier with current-source active load using complementary BJT devices. The current I_{EE} = 2 mA. The early voltages are :

 $V_{b} \bullet Q_{3} \bullet V_{out} \bullet V_{in2}$ $V_{in1} \bullet Q_{1} \bullet Q_{2} \bullet V_{in2}$ $P \bullet I_{EE}$

The signals V_{in1} and V_{in2} are balanced differential. Calculate the differential voltage gain $V_{out}/(V_{in1} - V_{in2})$?

****** Some useful formulae*********

$$r_{e} = \alpha / g_{m} \quad g_{m} = I_{C} / V_{T} \quad r_{\pi} = h_{fe} / g_{m} \quad h_{fe} = i_{c} / i_{b} \quad r_{o} = V_{A} / I_{C}$$

$$\alpha = \frac{h_{fe}}{h_{fe} + 1} \qquad V_{T} = \frac{kT}{q} \approx 25mV \text{ at room temperature}$$

DIT

 $I=I_s exp(v_{BE}/V_T)$
