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Appendix-I 
 

(Electronics-I and Network Analysis Background) 
 

 

1. BJT and MOS circuit calculations 

 
1. DC calculations 
 
1.1 For a dc bias current IE at the emitter of a BJT, the collector current 

is:
DC EI . 

 
1.2 For a dc bias current IE at the emitter of a BJT, the base current 

is: /(1 )E DCI  . 

 
 

1.3 The relationships between      and      for DC calculations 

are: /(1 ); /(1 )DC DC DC DC DC DC         . 

 
1.4 A resistance RE  connected between the emitter node and  ac ground 

appears as a resistance  (1 )E DCR  at the base node. 

 
1.5 A resitance RB connected between the base node and ac ground appears as 

a resistance /(1 )B DCR  at the emitter node. 

 
1.6 Either of 1.4 or 1.5 can be used to carry out DC circuit calculations with 

reference to the base side and emitter side respectively. 
 

 
1.7 For DC and large signal (i.e., in digital circuits) calculations, the EB junction 

behaves like a constant battery. If a value is not given, you can assume this 
to be 0.7 volts. For NPN, the voltage is VBE while for PNP it is VEB. 

 
1.8 For an enhancement type MOSFET (E-MOS) with N-channel, the DC current 

formulae are: 
 

 

 
 
 
 
 
 
 
 



Dr.Rabin Raut Page 2 sur 18 05/01/2012 

 
1.9 For a P- channel E-MOS, the formulae become (note the changes in the 

symbols!): 
 

 
 
2. AC (i.e., small signal) calculations 
 
2.1 A DC current IC at the collector produces an ac equivalent circuit with a 

transconductance gm = Ic /VT, where VT is the thermal voltage kT/q. Unless 
given otherwise, assume VT = 25 mV at room temperature (300

o
 Kelvin). 

 

2.2 A DC current IE at the emitter produces a resistance of  re = /T EV I , in the ac 

equivalent circuit of the BJT. Unless given otherwise, assume re  = 25mV/IE  
at room temperature (300

o
 Kelvin). 

 

2.3 Since IC = 
ac IE , it follows that gm = 

ac /re . For quick and approximate 

calculations you can assume that gm = 1 /re . 
 
2.4 For ac components of the BJT in CE mode of operation,  ic = hfe ib,  ie = (hfe 

+1)ib, where hfe  is the ac current gain in CE mode of operation. Similarly, for 

CB mode of ac operation 
ac    = hfb =hfe /(1+hfe). 

 
2.5 For small (ac) signals (i.e., ≤VT /10), the BJT base-emitter junction behaves 

like a diode with an ac resistance of re at the emitter node. Looking from base 
node this transforms into a resistance of re (hfe +1). This is the famous 
reflection rule for CE BJT amplifier.** 

 
2.6 An extension of the reflection rule is : if RE is the total resistance from the 

emitter lead to ground (ac voltage =0), the equivalent resistance by looking at 
the base node will be RE(hfe +1). On the other hand if there is an ac 
equivalent resistance RB connected  between the base and ac ground, the 
resistance that appears across these two terminals is RB/(hfe+1). This is the 
inverse reflection rule.  

 
2.7 The rules as above arise because for same signal voltage across the base-

emitter junction, there is a difference in the values of signal currents in the 
base with that at the emitter. The factor is (hfe +1). Continuity of voltage and 
current through the EB junction is maintained if this scaling factor is used to 
scale up (or down) the respective resistances.** 

 
2.8 The reflection rule applies equally well for impedances connected at the 

emitter or at the base terminal.** 
 
2.9 Because of the reflection rule, the ac resistance of the intrinsic transistor, 

when looked from the base side becomes (hfe +1) re = rπ .** 
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** The above cases  (2.5-2.9) can be applied as a rule of thumb only if ro is infinite 
(i.e., VA = infinity, or unspecified). For finite value of ro, the rule is applicable if one 
end of ro is grounded for ac signals. 

 
2.10 How to figure out if to use re or rπ  in the equivalent circuit? If, while 

following the path of signal flow (from the signal source end), you encounter 
the E-terminal of the BJT before the B-terminal, you will use re . But if you 
meet with the B-terminal before the E-terminal, you will use rπ . Another clue 
is: for CE  and CC amplifier you will use rπ  and for CB amplifier you will use re 

. 
 

2.11  VA is the early voltage for the transistor, the output resistance of the 
intrinsic device (BJT or MOS) is ro  (rds for MOS) = VA / IDC , where IDC  is the 
DC bias current value at the collector (drain for MOS) of the transistor. 

 
2.12  An E- MOS transistor, when operating in saturation region, has the ac 

transconductance gm : 2 ( / )ox DCC W L I  

 
2.13  An E- MOS transistor, operating in the linear region, has an output 

resistance of:
1[ ( / )( )] ;ox GS THNC W L V V   for PMOS use VSG, and |VTHP|. 

 
 
The informations above will be useful to draw the ac equivalent circuit for a transistor and to 
perform quick and simple hand calculations regarding certain charcteristics of the transistor 
amplifier. 
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Appendix-II: Linear Network Analysis Fundamentals 
 

The time domain integro-differential equations for linear networks (i.e., networks containing linear 

circuit elements like R,L and C, linear controlled sources such as VCVS,VCCS,CCCS and CCVS) 

can be arranged in a matrix form: 

w(p) x(t) = f(t) 

where, w(p) is an impedance/admittance matrix operator containing integro-differential elements ( 

x(t) is the current/voltage variables (vectors) in the edges of the network graph and f(t) are the 

source voltage/current variables (vectors). The p-operator implies p = d /dt and 1/p =   dt. On 

taking Laplace transform of both sides, one could derive 

W(s) X(s) = F(s) + h(s) 

where h(s) contain the contributions due to initial values.On inserting s = j one can get the 

Frequency Domain characterization of the system. The above sequence of operation, is, however, 

rather lengthy and impractical. A more efficient technique is to characterize each network 

component (R,L and C) in s-domain including the contribution of initial conditions and formulate 

the network equations as was done before. Impedance elements so expressed are transformed 

impedances and the network becomes a transformed network. 

 

2.1 Transformed Impedances 

The transformed impedances are impedance elements referred to a transform (i.e., Lapalce 

Transform) domain.  Characterizations for transformed basic network elements are discussed 

below. For ideal voltage or current sources the transformed quantities are simply the Lapalce 

transforms (e.g., Vg(s), Ig(s)). For the i-v relation across a resistor, one can write either 

VR(s)=IR(s)R or the dual IR(s)=VR(s)/R. Thus there are two characterizations (viz., an I-mode 

and a V-mode) for each element. The particular choice depends upon which of I(s) and V(s) is  

the independent variable. In loop analysis, the I(s) becomes independent variable and the voltage 

and impedance around the loop are recorded as part of the systematic procedure to obtain the 

matrix formulation (for example, by inspection). In this case the series equivalent model of the 

transformed impedance has to be used.The cases of interest are shown in Figures 1.1(a)-(b) and 

1.2 (a)-(b) for the inductance and capacitance respectively. 
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In nodal analysis, where the node voltage becomes independent variable, the shunt architecture 

are to be used for the transformed impedances.  

A network containing transformed impedances is referred to as transformed network.  
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Appendix-III: Network analysis technique 

 
3.1  Nodal analysis 

In nodal analysis, a voltage source in series with an element should be transformed into a current 

source with a shunt element by employing source transformation (i.e., Thevenin to Norton 

equivalent). This will reduce the number of nodes and also make the analysis more homogeneous 

in that we have to deal with only node voltages and current sources (independent, dependent) 

which are the principal variables in nodal analysis. It may be recalled that the nodal system of 

equations is represented by the matrix equation Y(s)V(s) = J(s), where Y(s) is the admittance 

matrix, V(s) is the node voltage vector (i.e., a column matrix) and J(s) is the current source vector. 

If a voltage source feeds more than one unique impedance in a parallel connetion, E-shift 

technique 
1
is to be used before embarking on the source transformation operation.  The given 

network has to be converted to a network with transformed impedances with shunt model 

representation for inductances and capacitances. 

Steps to setup the matrix equation for Nodal Analysis 

 

Step 1: Identification of the sources: identify all dependent and independent sources. These are 

to be included initially as elements of the vector J(s). 

Step 2: Set up the matrix elements  

(a) yii elements are sum of admittances (conductances) meeting at the node. This is the self 

admittance. 

(b) yij elements are negative of the admittances running between the node pair (i,j). This is 

trans admittance. 

The above two sets are to be included in the Y(s) part of the matrix equation Y(s)V(s) = J(s). 

(c) jnk element is the sum of current sources meeting at kth node, taken positive if towards and 

negative when away from the node. These are to be included in the J(s) part of the matrix 

equation Y(s)V(s) = J(s) 

Step 3: In J(s) decode the dependent I-sources in terms of the node (voltage) 

variables i.e., elements of V(s). 

Step 4: Transpose the quantities obtained in step 3 to the other side and allocate 

them to appropriate locations in the Y(s) matrix. 

The above four steps complete the setting up of the node system of matrix 

equation in the form Y(s)V(s) = J(s). 

 
3.2 Loop analysis 

                                                           
1
Linear Networks and Systems, 2nd edition, vol.1, by Dr. Wai-Kai Chen. 
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The first thing is to draw the equivalent circuit with transformed impedances using series model 

versions for inductors and capacitances. Further, all current sources are to be converted to 

equivalent voltage sources with series impedances using source transformation (i.e., Norton to 

Thevenin). If a current source exists with no unique impedance in parallel, I-shift technique is to 

be used before applying source transformation. It may be recalled that the loop system matrix 

equation has the form Z(s)I(s) = E(s), where Z(s) is the impedance matrix, I(s) is the loop current 

vector and E(s) is the loop voltage vector. 

Steps to setup the matrix equation for Loop Analysis  

 

Step 1 (Identification of sources): look up all voltage sources (independentn and dependent) to 

be initially included as elements of the E(s) vector. 

Step 2 (Identify the loop impedance matrix operator elements and loop voltage source 

vector) 

(a) self loop impedance zii is the sum of all impedances in the loop i. 

(b) mutual loop impedance zij is the impedance shared by loop i and loop j. If currents in loops i 

and j are in the same direction zij  is taken with a positive sign. On the other hand, if the currents in 

loops i and j are in opposite directions, it is taken with a negative sign.  

( c) loop source  vector eI  is the algebraic sum of all the voltage sources in loop i. The 

components are taken with a positive sign if a potential rise occurs in the direction of the loop 

current. If a potential drop takes place in the direction of the loop current, the voltage element is 

taken with a negative sign. We tus have the preliminary form Z(s)I(s) = E(s). 

Step 3 In E(s) found above and express the dependent sources in terms of the loop current 

variables (i.e.,elements of I(s)).  

Step 4 Transpose the dependent components of E(s) on the other side and allocate the 

associated coefficiens to proper location of the Z(s) matrix.  

The above four steps will produce the final matrix equation form Z(s)I(s) = E(s) for loop analysis. 

 

 

3.3 Network Functions 

 

If we study the relationships developed in connection with nodal and loop analysis, we can 

discover a general format, i.e., W(s) X(s) = F(s) + h(s), where W(s) can be either an admittance or 

an impedance matrix, X(s) can be nodal voltage vector or loop current vector, F(s) the vector of 

independent sources and h(s) the vector of initial conditions. Using this equation ,one can easily 

arrive at: X(s) = W-1(s)F(s)+ W-1(s)h(s). The FIRST part of the solution on the RHS is the 
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complete solution if initial values were zero (so h(s)=0). This is called zero (initial) -state 

response. The SECOND part of the solution on the RHS is the complete solution if the forcing 

functions were zero (so F(s)= 0). This is known as zero -input or natural response.  

A network function is defined with regard to zero-state response in a network when there is only 

one independant voltage/current (driving function) forcing function in the network.. It is the 

ratio of the Lapalce- transform of the zero-state response at a given point (node) in a network to 

the Lapalce- transform of the input (or another zero-state response) effective at another location 

of the network. 

Depending upon the location of the pair of points there are two nomenclatures. If the pair of points 

are same, we talk about driving point impedance or driving point admittance. If the pair of 

points are separate, we can derive (i) transfer function in voltage, (ii) transfer function in 

current, (iii) transfer impedance and (iv) transfer admittance  

 

3.4 Characteristics of Network functions 

 

It is well-known that Laplace transform of time-domain integro-differential equations are algebraic 

functions in the variable s, which is regraded as complex frequency i.e., s =  + j. When we 

set  =0, the resulting algebraic function (i.e., s=j.) represents a frequency domain function. 

The network functions are thus rational algebraic functions of s . The parameter  relates to 

damping (or growth) of the time domain response while  gives the frequency of the time-

domain waveform.  

When   > 0, the system becomes unstable (time domain response grows) and when  << , the 

system exhibits frequency selectivity. For a self  oscillatory network  <= 0. For certain values 

of s, the network function ->0. These values (of s ) are the 'zeros' of the network function. 

Similarly, for some values of s, the network function -> . These values (of s ) are called the 

'poles' of the network function. 

 

3.5 Two-port Networks 

A node pair, such that current entering one node is exactly equal to the current exiting out of the 

other node constitute a one-port. If there is another node pair with the same property, we 

have another one-port. If the node pairs belong to the same system, we have a two-port 

network system. As an illustration, consider the following diagram. The concept of an n-port 

can also be developed similarly. 
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It is possible that the nodes 1',2' ... n' are one and the same node (i.e., ground). In 2-port network 

theory we consider only the external node pairs. The system is considered as a black box with 

no independent current/voltage source(s) residing inside the black box. Also all initial 

conditions are assumed to be zero (or taken care of by proper analysis prior to 

characterization as a 2-port network). The electrical characteristics of the two port is entirely 

defined in terms of the voltage/current source(s) effective at the external terminals of the 

(black box) network. Thus the two port network theory can be very conveniently applied to 

fairly large sized networks. There are several ways in which one can select a pair of 

independent voltage/current variables from the set V1, I1, V2 and I2. Thus we come across (i) 

Short circuit admittance parameters characterization, (ii) Open circuit impedance parameters 

.. , (iii) Hybrid parameters , and (iv) g-parameters.  

 

3.5.1 Admittance Parameters  

The characterization is best described by the matrix equation 

[Y][V] =[I] 

The above corresponds to the set of linear equations 

y11V1 +y12 V2 = I1 ; y21 V1 + y22 V2 = I2 . The defining equations for the parameters are: 

y11 = [I1 /V1 ]V2=0, y12 =[I1 /V2 ]v1=0 , and so on. 

The electrical network model (i.e., equivalent to the network inside the black box) for the above 

set of equations is: 

 

y y
11 22

y   V y   V
12 21

2 1

V V
1 2

I I
1 2

+ +

-
-
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3.5.2 Impedance Parameters 

Here the matrix relation is as [Z] [I] = [V]. The set of equations are: 

z11 I1 +z12 I2 = V1 ; z21 I1 + z22 I2 =V2. The network model is: 

One can use the above relations to derive z11 =(V1 /I1) with I2 =0, i.e., port 2 open, z12 = (V1/I2) with 

I1 =0 and so on. 

 

3.5.3 Hybrid (h-) Parameters 

In this V1 is related to I1 (impedance) and V2 (transfer ratio) while I2 is related to I1 (transfer ratio) 

and V2 (conductance). That is why the name hybrid. It became popular to model transistor 

devices as a two port network. The system of equations are: 

h11I1 +h12 V2 = V1 ; h21 I1 +h22 V2 =I2 . Thus h11 =(V1/I1) with V2 =0, i.e., port 2 short circuited, h12 

=(V1/V2) with I1 =0, i.e., port 1 open, and so on. The network model is: 

 

 

3.5.4 Hybrid (g-) Parameters 

Here the choice of variables are reversed compared with the h-parameter system. Thus I1 and V2 

are related to V1 and I2. The system equations are: 

g11V1 + g12 I2 = I1 ; g21V1 +g22I2 = V2. Thus g11 =(I1 /V1) with I2 =0, g12 =(I1/I2) with V1 =0, and so on.  

The network model is: 
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Appendix-IV: Interconnection of Two-port Networks 

 

Various kinds of interconnection are possible between two two ports. The principle in obtaining the 

overall 2-port parameters involve (i) writing down the parameters for the individual 2-ports, (ii) 

identify the effect of the interconnection on the terminal variables which are being 

interconnected (they become identical, add up ... etc), (iii) re-write the new set of terminal 

variables according to the interconnection. 

 

4.1 Parallel connection 

In this connection, the terminal voltage pairs remain identical so that the currents at each port get 

added up because of the interconnection. Y parameter representation is the most preferred 

choice to begin with. The overall Y-parameters is the sum of the constituent Y-parameters. 

Thus, [Y] = [Y]a + [Y]b , where networks Na and Nb are connected in parallel at the input and at 

the output. 

4.2 Series connection 

Terminal currents remain same (series) so that the terminal voltage variables add up. Z 

parameter representation is the preferred choice. The overall Z-parameter is the sum of the 

constituent Z-parameters.Thus, [Z] = [Z]a + [Z]b where Na and Nb are the networks connected 

in series both at the input and at the output. 

4.3 Series (input)- Parallel (output) connection 
As the name suggest, the input ports (i.e., port #1) are connected in series while the output ports 

(#2) are connected in parallel. Thus at port#1 we will have I1=I1a=I1b, but V1=V1a+V2a, while at 

port#2 we get I2=I2a+I2b, and V2=V2a=V2b. Since V1 and I2 needs recalculation, it will be most 

profitable to start with the h-parameters. The overall H parameter matrix becomes equal to the 

sum of the component h-parameter matrices. Thus,  

[H] = [H]a + [H]b 

 

4.4 Parallel (input)- Series (output) connection 
As the name suggest, the input ports (i.e., port #1) are connected in parallel while the output ports 

(#2) are connected in series. Thus at port#1 we will have V1=V1a=V1b, but I1=I1a+I2a, while at 

port#2 we get V2=V2a+V2b, and I2=I2a=I2b. Since I1 and V2 needs recalculation, it will be most 

profitable to start with the g-parameters. The overall G parameter matrix is given by: 

[G] = [G]a  + [G]b  
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Appendix-V: Transfer Function and BODE Plot 
 
In the above, the concept of a transfer function has been presented. It is a function of the variable 

s which is associated with the notion of a complex frequency in electronic circuits and systems. 

Let us designate this with the symbol T(s). Since T(s) is function of a complex variable (i.e., of s), 

it can have a magnitude and a phase angle. Bode plot involves plotting the functions 20log |T(s)| 

and  /___T(s) as a function of frequency. Let us consider some simple concepts. 

 

5.1 T(s) = Ks, where K is a constant. 

For frequency domain analysis, we shall set s= jω. Thus, 20log |T(s)| = 20log (K) +20log (ω) 

=M(ω), say, and /____T(s) = arctan (ω/0) = 90 degrees. Since K is a constant, 20log (K) will be a 

constant. So far frequency dependence is concerned, M(ω) will be influenced by the term 20log 

(ω). As ω increases, M(ω) will increase linearly, beginning from   negative infinity at ω =0. When 

ω =2, , M(ω) = 6dB, when ω =10,  M(ω) = 20dB and so on. In another way, one can say that if 

there are two frequencies ω1  and ω2 , M(ω2 ) will be 6 dB higher than M(ω1 ) if ω2 = 2 ω1  and 

M(ω2 ) will be 20 dB higher than M(ω1 ) if ω2 = 10ω1. These concepts are spelled out using the 

phrases: M(ω) changes at a rate of 6 db/octave (ratio =2), or M(ω) changes at a rate of 20 

db/decade (ratio =10). 

Thus the Bode plot of T(s)= Ks have the characteristics (a) the magnitude part increases at a rate 

of 6db/octave (or 20dB/decade), linearly with a positive slope and (b) the phase part is constant at 

90 degrees. 

 

5.2  T(s) = K/s.  

Now M(ω)= 20log |T(s)| = 20log (K) - 20log (ω) and and /____T(s) = - arctan (ω/0) =- 90 degrees. 

Following the concept above, one can conclude that the Bode plot of T(s) has a phase angle of – 

90 degrees and a magnitude which decreases linearly at a rate of 6 dB/octave (or 20 dB/decade). 

 

5.3  T(s) = K(s+a).  

Now the phase angle = arctan (ω/a) and dB magnitude M(ω) = 20log (K) + 20log[ (ω
2
 +a

2
 )

1/2
 ]= 

20log (K) + 10log (ω
2
 +a

2
 ). When ω is very small compared with a, M(ω) has a nearly constant 

value ~ 20 log(K) + 20log(a) dB, increasing slowly with increasing ω. When ω = a, M(ω) = 20log 

(K) + 20log (2a
2
 )

1/2
, i.e., , M(ω) = 20log (K) + 20log (a ) + 20log (2)

1/2
 =20log (K) + 20log (a ) + 3 

dB. This is a distinct value. Thus the magnitude of T(s) has a Bode plot which is nearly a constant 

at small values of ω, increases slowly with ω and becomes 3 dB higher as ω becomes equal to a. 

Now from the concpet of poles and zeros, it is clear that T(s) has a zero at a. The values of M(ω) 

when ω has critical values of zero or infinity, are usually referred to as asymptotic values. Thus, 



Dr.Rabin Raut Page 14 sur 18 05/01/2012 

one can summarize that when T(s) has a zero at (say)  ω =a, the Bode magnitude plot of T(s) 

increases by 3 dB at  ω =a compared to its asysmptotic value at  ω =0. As ω passes through a 

and becomes very large compared with a, the function T(s) approximates to T(s) ~ K(s) and 

hence behaves in the same manner as in case 1 above. Thus as ω  becomes very hgh compared 

with the zero of T(s),i.e., a, the magnitude plot changes linearly with ω approacing asymptotically 

a straight line of slope +6dB/octave (or 20dB/decade) erected at the frequency ω =a. Further, as 

the phase angle is arctan (ω/a), it is nearly zero for small values of ω and increases slowly with ω. 

At ω=a, since arctan (a/a) =1, the phase angle is 45 degrees. Thus at the zero of T(s) the phase 

angle is +45
o
 relative to its previous asysmptotic value. As ω becomes very high compared to a, 

the phase angle tends towards 90 degrees since arctan (infinity) is 90 degrees (i.e., tan (90
o
) is 

infinity).  

 

5.4  T(s)= K/(s+a). 

Now the phase angle = 0 -arctan (ω/a) and dB magnitude M(ω) = 20log (K)  -20log[ (ω
2
 +a

2
 )

1/2
 ]= 

20log (K) - 10log (ω
2
 +a

2
 ). When ω is very small compared with a, M(ω) has a nearly constant 

value ~ 20 log(K) - 20log(a) dB, and it decreases slowly with increasing ω. When ω = a, M(ω) = 

20log (K) - 20log (2a
2
 )

1/2
, i.e., , M(ω) = 20log (K) - 20log (a ) - 20log (2)

1/2
 =20log (K) +-20log (a ) - 

3 dB. This is a distinct value. Thus the magnitude of T(s) has a Bode plot which is nearly a 

constant at small values of ω, decreases slowly with ω and becomes 3 dB lower as ω becomes 

equal to a. Now from the concpet of poles and zeros, it is clear that T(s) has a pole at a. Thus, 

one can say that when T(s) has a pole at (say)  ω =a, the Bode magnitude plot of T(s) decreases 

by 3 dB at  ω =a compared to its asysmptotic value at  ω =0. As ω passes through a and 

becomes very large compared with a, the function T(s) approximates to T(s) ~ K/s and hence 

behaves in the same manner as in case 2 above. Thus as ω  becomes very high compared with 

the pole of T(s),i.e., a, the magnitude plot changes linearly with ω approacing asymptotically a 

straight line of slope -6dB/octave (or 20dB/decade) erected at the frequency ω =a. Further, as the 

phase angle is - arctan (ω/a), it is nearly zero for small values of ω and decreases slowly with ω. 

At ω=a, since - - arctan (a/a) =-1, the phase angle is -45 degrees. Thus at the pole of T(s) the 

phase angle is  -45
o
 relative to its previous asymptotic value. As ω becomes very high compared 

to a, the phase angle tends towards - 90 degrees since - arctan (infinity) is - 90 degrees. 

 

5.5 T(s)= K(s+wz1)(s+wz2)…….(s+wzm)/[(s+wp1)(s+wp2)…(s+wpn)] 

Now we have a general case where the transfer function has a number of zeros and a number of 

poles. After taking logarithms, one can derive M(ω) = 20log(K) + 10log(ω
2
 +wz1

2
) + 10log(ω

2
 

+wz2
2
) + … +10log(ω

2
 +wzm

2
) –10log(ω

2
 +wp1

2
) - 10log(ω

2
 +wp2

2
) -….- 10log(ω

2
 +wpn

2
). Similarly, 

the phase angle will be Φ = artctan (ω/wz1) + artctan (ω/wz2)+.. + artctan (ω/wzm) - artctan (ω/wp1) 

- artctan (ω/wp2)- ..- artctan (ω/wpn). We can now apply the knowledge learned in items 3 and 4 
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above like the principle of superposition at each zero and at each pole in accordance with their 

order of numerical values. Thus so far the magnitude (in dB) plot is concerned, M(ω) will start off 

with a constant value of  20log(K) + 20log(wz1) + 20log(wz2) + … +20log(wzm) –20log(wp1) -

20log(wp2) -….- 20log(wpn). This is the asymptotic value at ω = 0.  As ω increases, at each zero 

of T(s) the magnitude response changes by +3dB relative to the previous asysmptotic value and 

at each pole of T(s), the response changes by –3dB relative to the previous asysmptotic value. 

Between two susccessive critical points (i.e., zero or pole), the plot tends to follow a straight line of 

slope +6dB per octave (+20dB per decade) if the current critical point is a zero of T(s). If the 

current critical point is a pole of T(s), the magnitude plot tends to folow a straight line of slope - 

6dB per octave (-20dB per decade).  For a succession of zeros and poles of T(s), the values are 

to be added up successively. 

So far the phase angle is concerned, it starts with zero at ω =0. Thereafter, it changes by +45
o
 at 

each zero of T(s) relative to its value at the previous critical point (zero or pole) and it changes by 

– 45
o
 at each pole relative to its value at the previous critical point (zero or pole). For a succession 

of zeros and poles of T(s), the phase angle values are added up successively. 

 

Appendix-VI: Practice Exercises 

 

6.1 For the network shown below, find the output resistance for ac small signal case [hint; use 

dummy source at the output end and find v/I at that end]. 

v





r or
mg v

outR

ER

 

6.2 Repeat 1 with RE replaced by a BJT device as indicated below. [hint: use the ac equivalent 

circuit for the BJT device] 

BV

EEV

ER

 

6.3 Repeat 1 with RE replaced by a MOS device as shown below. 
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ER
GV

SSV
 

6.4 A sub-network in a differential amplifier circuit appears as below. Find an expression fro Rin 

considering small signal (ac) equivalent circuits. Use nodal matrix method. 

CCV

1CR 1CR
xR

inR
 

6.5 The ac equivalent circuit for a BJT amplifier with un-bypassed resistance RE at the emitter is 

shown below. Find, using nodal matrix analysis method, an expression for the voltage gain vo/vi.  

v





r
mg v

ER

CR

iv

 

6.6 Use the ac equivalent circuit and loop matrix analysis method to find the expression for the 

voltage gain vo/vs. [Ans. 

1 1

. ,
1/

m c B

xx c

g R R r s

R s C R







where 

1( ) ( ); || ( )xx s B s x B x c s B xR R R R r r R r r R R R r r          ] 

v





r

sv
sR 1C

BR

xr

mg v
CR 

ov

1i
2i
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6.7 Consider the ac equivalent circuit of a BJT at high frequencies. Find vo/vs using nodal matrix 

method. [Ans. 
( )

;
m sg sC g





where 

2( )( ) [( ) ( )( ) ]s o L s o L mg g g g s g g C g g C C g C s C C       
            , and 

1/( ),s s xg R r    all 1/ .i ig r  

v





r

sv
sR xr

mg v

ov

C

C

or
LR

 

6.8 The high-frequency ac equivalent circuit of a MOSFET ampliflier is shown below. Find the two-

port Y-matrix description for the system.[ hint: formulate 
11 12

21 22

[ ] [ ][ ], [ ]
y y

I Y V Y
y y

 
   

 
; then 

find 
11 12,y y ] 

 

1 2

m gsg vgsv





dr
iR iC

fC

 

 

6.9 For the system as shown below, the measured y11 data are tabulated as below. Find the ac 

equivalent model for the y11 part of the system.[ hint: consider y11 as a parallel combination of a 

resistance R and a reactance X. Find the values of R and the component associated (C or L) with 

X]. 

 

Frequency Re(y11) Im(y11) 

100 1E-11 6.06E-6 

1 K 1E-11
 

60.6E-6 

10 K 1E-11
 

606E-6 

 

1 2System
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6.10 A frequency domain transfer function is given by 
10

( )
20

T s
s




. Sketch the Bode plot for 

|T(s)| 

6.11 A frequency domain transfer function is given by 
200

( )
( 10)( 300)

s
T s

s s


 
. Sketch |T(s)| 

using Bode technique. 

6.12 A sketch of |T(s)| with 
1500( 100)

( )
( 20)( 1000)

s
T s

s s




 
, is shown below. If there is any error in the 

sketch, correct it and re-draw. 

20 100 200 1000
(radians)

2 dB

10 dB
- 6dB/Octave slope

-12dB/Octave slope

+12dB/Octave slope

1

 


