Review (Pre-Final) ELEC 312 (W0809)

### Differential Amplifier

- •AC operation with discrete load (fully diff.,balanced diff.,single in diff. Out, Common mode rejection)
- AC operation with active load (diff. In single out)
- Different kinds of active loads

### Multistage Amplifier

- Diff. Amp, CE, CB, CC (CS,CG,CD for MOS) stages
- Overall gain calculations take note of the loading at the inter-stage coupling
- Input, output resistance calculations

- Concepts of 3dB frequencies, dominant poles
- Expressing the gain as  $A_{\!M}A_{\!L}A_{\!H}$
- Calculations for high-frequency gain (OCTC, Full Transfer function, use of Miller's effect principle)
- Frequency response of  $h_{\it fe}$  (~relates to transition frequency)
- Cascode and other compound stages for improved high frequency response
- Gain- bandwidth calculations

# Frequency Response of Amplifiers

### **Negative Feedback Systems**

- Four types of feedback connection
- Related two-port circuit and equation models (only three parameters are important)
- Calculations with 'loaded' amplifier (pay attention to proper unit of the loaded gain)
- Use of the four basic amplifier equivalent circuit models (VCVS,CCCS..)
- Stability in negative feedback
- Gain margin, phase margin related calculations

### **Output Stages**

- DIFFERENT DC BIASING
- •EFFICIENCY CALCULATIONS IN CLASS A AND CLASS B AMPLIFIERS
- •BASIC SCHEMATICS OF CLASS A,B AND AB STAGES
- •CLASS AB BIASING CALCULATIONS
- •DIFFERENT CLASS AB CONFIGURATIONS INCLUDING VBE MULTIPLIER, COMPOUND STAGES
- •HEAT DISSIPATION CONSIDERATIONS

## Filters & Tuned Amplifiers

- Transfer function calculations
- Band-edge frequencies and Bandwidth calculations

### Oscillators

- •Barkhausen condition
- •Wein Bridge, Phase shift, Colpitt's and Crystal oscillators
- Analysis using loop-gain concept
- •Analysis using Nodal Admittance and Constraint equation methods

# GOOD LUCK!