ELEC 312: ELECTRONICS – II : ASSIGNMENT-5 Department of Electrical and Computer Engineering Winter – 2012

Solution: 9.97

All V_{ov} are the same, all V_A are the same All r_0 are identical and all g_m 's are identical

We know Ad(s) =
$$g_m R_0 \left[\frac{1 + \frac{s \cdot C_m}{2 g_{m3}}}{1 + \frac{s \cdot C_m}{g_{m3}}} \right] \cdot \left(\frac{1}{1 + s C_L R_0} \right)$$

We also know that the frequencies of the zero f_z and the pole f_{p2} occur at very high frequencies. Thus we can assume that the pole f_{p1} = 1/ $(2\pi\ C_L\ R_o)$ dominates the response of $A_d(s)$ passed the unity gain

Thus:

$$Ad(s) = g_m R_0 \left(\frac{1}{1 + i\omega C_L R_0} \right);$$

At unity gain $| A_d (\omega_1) | = 1$

$$\Rightarrow 1 = \frac{g_m R_0}{\sqrt{1 + (\omega_1 C_L R_0)}}$$

$$\Rightarrow \omega_1^2 = \frac{(g_m R_0)^2 - 1}{(C_L R_0)^2}$$

since
$$g_m R_0 = g_m \frac{r_0}{2} >> 1 \Rightarrow \omega_1 \approx g_m / C_L$$

$$\Rightarrow f_1 = \frac{g_m}{2 \pi \cdot c_L}$$
For $V_A = 20 \text{ V}$, $V_{ov} = 0.2 \text{V}$,

$$I = 0.2 \text{ mA}$$
, $C_L = 100 \text{ fF}$, $C_m = 25 \text{ fF}$

All r_o are identical:

$$r_0 = \frac{V_A}{I_D} = \frac{20 \text{ V}}{(\frac{0.2 \text{ m}}{2})} = 200 \text{ k} \Omega$$

All
$$g_m$$
 are identical: $g_m = \frac{2 I_D}{V_{ov}} = \frac{0.2 m}{0.2} = \frac{1 mA}{V}$

The low frequency differential gain is:

$$A_{dDC} = g_m \frac{r_0}{2} = 100 \text{ V/V}$$

$$f_{p1} = \frac{1}{2 \pi \cdot C_L R_0} = 15.9 \text{ MHz}$$

$$f_{p2} = \frac{g_m}{2 \pi \cdot C_m} = 6.37 \text{ GHz}$$

$$f_Z = \frac{2g_m}{2 \pi \cdot C_m} = 2 \times f_{PZ} = 12.74 \text{ GHz}$$

Solution: 9.105

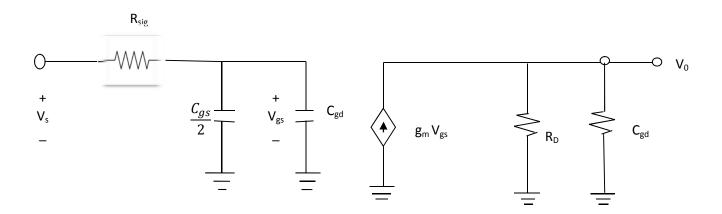
$$V_{G1} = \frac{V_S \cdot \frac{2}{g_m}}{\frac{2}{g_m} + R_{sig}}$$
 and $I = \frac{V_{G1}}{\frac{2}{g_m}}$

$$V_0 = I R_D = \frac{V_S \cdot R_D}{\frac{2}{g_m} + R_{sig}}$$

$$A_0 = \frac{V_0}{V_S} = \frac{g_m \cdot R_D}{2 + g_m R_{Sig}}$$

$$g_{\rm m} = \frac{200 \,\mu A}{0.2 \,V} = 1 \,\text{mA} \,\,\text{so A}_{\rm o} = 247.5 \,\text{V/V}$$

The high frequency equivalent circuit is:



Thus the pole at the input has a frequency $f_{p1} = \frac{1}{2 \pi \cdot R_{sig} \left(\frac{C_{gs}}{2} + C_{gd}\right)} = 350 \text{ KHz}$

and the pole at the output has a frequency $f_{p2} = \frac{1}{2 \pi \cdot R_D \cdot C_{gd}} = 3.18 \text{ MHz}$

Thus
$$f_H = \frac{1}{\sqrt{(\frac{1}{f_{p1}})^2 + (\frac{1}{f_{p2}})^2}} = 52$$

ELEC 312: ELECTRONICS – II : ASSIGNMENT-6

Department of Electrical and Computer Engineering Winter - 2011-2012

1. A series-series feedback circuit represented by Fig.1, and using an ideal transconductance amplifier operates with $V_s = 100 \text{ mV}$, $V_f = 95 \text{ mV}$, and $I_0 = 10$ mA. What are the corresponding values of A and β ? Include the correct units for each.

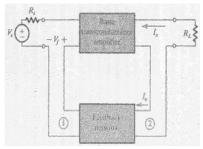


Figure 1:

 $\frac{\text{Hints:}}{V_1 = V_s - V_f}; \ V_f = \beta I_o \ \text{hence}, \ \beta = V_f / I_o; \ A = I_o / V_1; \ A_F = \ I_o / V_s = A / (1 + A \ \beta).$

2. For an amplifier connected in a negative feedback loop in which the output voltage is sampled (i.e., a shunt connection), measurement of the output resistance before and after the loop is connected shows a change by a factor of 80. Is the resistance with feedback higher or lower? What is the value of the loop gain A β ? If R_{of} is 100 Ω , what is R_{o} without feedback?

Hints:

 R_0 is lowered by amount of feedback i.e. $(1+A \beta) = 80$; $A\beta = 79$, $R_0 = R_{of} (1+A \beta)$

3. The shunt-shunt feedback amplifier in the Figure 3 has I = 1 mA and $V_{GS} = 0.8$ V. The MOSFET has $V_t = 0.6 \text{ V}$ and $V_A = 30 \text{ V}$. For $R_S = 10 \text{ k}\Omega$, $R_1 = 1 \text{M}\Omega$, and R_2 = 4.7 M Ω , find the voltage gain v_0/v_s , the input resistance R_{in} and the output resistance R_{out}. You need to figure out the ac parameters for the MOS device.

1

Figure 3:

Hints:

Shunt-shunt feedback. We use Y-parameter model for the feedback circuit.

Find y_{11} , y_{22} , y_{12} for R_1 , R_2 . Remember $\beta=y_{12}$.

Draw loaded ac equivalent circuit. Use $R_{11}(=1/y_{11})$ in shunt at input, R_{22} (=1/y₂₂) in shunt at output..

$$\beta = I_F/V_o = -1/R_2$$
, Let $R_x = R_s + R_1$ and $\mu = g_m r_o$, $A = V_o/I_s' = -[R_x || R_2][R_2 || r_o]g_m$;

$$A_F = V_o/I_s = A/(1+A \beta),$$

Thus
$$V_o/(I_sR_x) = V_o/V_1 = 1/(\beta R_x) = -R_2/(R_1+R_s)$$

$$R'_{i} = (R_s + R_1)||R_2|$$
, $R_{if} = R'_{i}/(1 + A\beta)$, $R_{in} = R_{if} - R_s$

$$R'_{o} = R_{2} || r_{o}, R_{of} = R'_{o} / (1 + A\beta)$$

4. An op amp having a low-frequency gain of 10^3 and a single-pole transfer function with -3dB frequency of 10^4 rad/s is connected in a negative feedback loop via a feedback network having a transmission $\beta(s)$ given by $\beta(s) = \frac{\beta_o}{(1+s/10^4)^2}$. Find the value of β_o above which the closed-loop amplifier becomes unstable.

Hints:

$$A(s) = \frac{10^3}{1 + s/10^4}, \ \beta(s) = \frac{\beta_o}{(1 + s/10^4)^2}$$

Ang(Aβ) = $-tan^{-1}(\omega/10^4) - 2tan^{-1}(\omega/10^4) = 3tan^{-1}(\omega/10^4)$

For 180° , $\omega_{180} = \sqrt{3} \times 10^{4}$; for $|A\beta(\omega_{180})| < 1$, Determine condition for β_0

5. A DC amplifier has an open-loop gain of 1000 and two poles, a dominant one at 1 kHz and a high-frequency one whose location can be controlled. It is required to connect this amplifier in a negative feedback loop that provides a dc closed-loop gain of 100 and a maximally flat response. The transfer function of the amplifier can be modeled as:

$$A(s) = \frac{1000}{(1 + s / \omega_{1})(1 + s / \omega_{2})}$$

In the above ω_I is the dominant pole frequency. It is required that under feedback, the amplifier will have a maximally flat response according to the model

$$A_{f}(s) = \frac{1000\omega_{1}\omega_{2}}{s^{2} + (\omega_{p}/Q_{p})s + \omega_{p}^{2}}$$
, with $Q_{p} = 0.707$.

Calculate the required ω_2

Hints:

$$A(s) = \frac{1000}{(1 + s/\omega_1)(1 + s/\omega_2)},$$

$$A_f(0) = 10^3/(1+10^3β) = 100$$
, calculate β.

Formulate the $A_f(s)$ under feedback, and concentrate on the denominator polynomial D(s) in the form

$$s^2 + (\omega_p/Q_p)s + (\omega_p)^2$$

Compare it with

$$s^2 + s(\omega_1 + \omega_2) + (1 + A_o\beta)\omega_1\omega_2 = 0$$

$$Q_P = \sqrt{[(1+A_o\beta)\omega_1\omega_2]/(\omega_1+\omega_2)}$$
, calculate ω_2 Where, $Q_P = 0.707$ and $\omega_1 = 2\pi x 1000$ rad