Course		Number	Section
Electronics II		ELEC 312	W
Examination pages	Date	Time	# of
Final Examination	April 27, 2005	3 hours	3
Dr. R. Raut			
Materials allowed: X No Calculators allowed: No	Yes (Please specify) X Yes	othe December dit a gene terrer or si stati oc'A scatter ai to Billiothe marci to A scattere	
Students are allowed to u	use silent, non-programmable elec	ctronic calculators without tex	kt display.
Special Instructions:			
Show all steps clearly in Students are required to	neat and legible handwriting (pre return question paper together w	ferably in ink). ith exam booklet(s).	

Q.1: Consider the basic BJT current mirror shown below. The transistor Q_2 has m-times the area of Q_1 .

(a) What will be the current transfer ratio obtained?

(b) If the minimum β is specified to be 80, what is the largest current transfer ratio possible while keeping the error due to finite β limited to 5%?

Q.2: For the circuit shown below, let I_c for each transistor be 100 μ A. The BJTs have β =200, f_T=600 MHz, and C_µ=0.2 pF. Further R_{sig} =R_c = 50 kΩ.

Find the low frequency gain, the high frequency poles and an estimate for f_{H} . You can neglect r_{o} and r_{x} for the transistors.

Q.3: A series-series feedback amplifier employs a transconductance amplifier having G_m =100 mA/V, input resistance of 10 k Ω , and an output resistance of 100 k Ω . The feedback network has β =0.1 V/mA, an input resistance (with port 1-open-circuited) of 100 Ω , and an input resistance (with port 2 open-circuited) of 10 k Ω . The amplifier operates with a signal source having a resistance of 10 k Ω and with a load resistance of 10 k Ω . Find A_f and R_{in} for the system.

Q.4: In a MOS amplifier, you are given the following: $R_s=100$ ohms, $C_{gs}=0.1$ pF, $C_{gd}=20$ fF, $g_m=50 \mu$ mho, $I_{DC}=50 \mu$ A, $V_A=20$ V, and $R_L=5$ k ohms. The MOS amplifier is configured to operate as CS amplifier. Find the dominant high-frequency pole of the amplifier using <u>nodal analysis</u>.

Q.5: A dc amplifier has an open-loop gain of 1000 and two poles, a dominant pole at 1 kHz and a high frequency pole whole location can be controlled. It is required to connect this amplifier in a negative-feedback loop that provides a dc closed-loop gain of 100 and a maximally flat response. Find the required value of β and the frequency at which the second pole can be placed.

Q.6: The figure below shows a MOSFET class AB output stage. All transistors have $|V_t|=1$ V and $k_1=k_2=nk_3=nk_4$, where $k=\mu C_{ox}(W/L)$ is the MOSFET transconductance parameter. Aklso $k_3=2mA/V^2$.

For $I_{BIAS} = 100 \ \mu$ A and $R_L=1 \ k\Omega$, find the value of n that results in a small-signal gain of 0.99 for output voltages around zero. Find the corresponding value of I_Q .

Bonus Question (6 marks)

For the network shown below find an expression for T(s), the voltage transfer function. In this network R can be adjusted to obtain various phase shifts.

If the signal frequency is 10⁴ rad/sec., and if C=10 nF, what values of R will produce a phase shift of -60° and - 150° respectively?