EXPERIMENT 3

The Four Op-Amp Biquad Circuit

(EXPERIMENTAL)

OBJECTIVE

To build different second order (biquad) filter circuits employing four operational amplifiers (OP-AMPs).

INTRODUCTION

A common practice in IC fabrication is to manufacture chips with multiple devices. A four opamp biquad takes advantage of the availability of four op-amps on a single chip enabling generation of several different second order filter responses. The four op-amp biquad realizes the general biquadratic function and exhibits low-pass, band-pass, high-pass, band-stop and all-pass characteristics simultaneously.

The Four Op-Amp Biquad Circuit

Fig. 1
The four opamp biquad shown in Fig. 1 can produce the general transfer function:

$$
T_{G}(s)=\frac{k_{1} S^{2}+k_{2}\left(\frac{w_{o}}{Q}\right) S+k_{3} w_{o}^{2}}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

The terms k_{1}, k_{2} and k_{3} in the general transfer function determine the type of filter. For example if $k_{3}=1$ and $k_{2}=k_{1}=0$ the general transfer function reduces to:

$$
T(s)=\frac{w_{o}^{2}}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

which is the standard low-pass transfer function with $H_{o}=1$.
Similarly, for $k_{1}=1$ and $k_{2}=k_{3}=0$ we obtain a high-pass transfer function:

$$
T(s)=\frac{S^{2}}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

For $k_{2}=1$ and $k_{1}=k_{3}=0$ we obtain a band-pass transfer function:

$$
T(s)=\frac{\left(\frac{w_{o}}{Q}\right) S}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

For $k_{1}=k_{3}=1$ and $k_{2}=0$ we have a band elimination (BE), also called a band-stop or notch, transfer function.

$$
T(s)=\frac{S^{2}+w_{o}^{2}}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

with $k_{1}=k_{3}=1$ and $k_{2}=-1$ the transfer function represent an all-pass filter (APF).

$$
T(s)=\frac{S^{2}-\left(\frac{w_{o}}{Q}\right) S+w_{o}^{2}}{S^{2}+\left(\frac{w o}{Q}\right) S+w_{o}^{2}}
$$

Pre-Lab

1. Derive the transfer function V_{2} / V_{1} in Fig.1, and identify the terms $k_{1}, k_{2}, k_{3}, w_{o}$ and Q, in terms of the circuit elements (i.e., $R_{1}, R_{2}, R_{3}, . . C_{1}$, and C_{2}). What value of R_{3} yields unity gain at the pole- frequency w_{o} ? What is the type of the filter?
2. Derive the transfer function V_{5} / V_{1} with the switch opened. Compare your result with the general transfer function $T_{G}(s)$, and identify the design cases for (a) a BE filter (i.e., k_{2} $=0$), and (b) an APF (i.e., $k_{2}=-1$ and, $k_{1}=k_{3}=1$) in terms of the circuit elements (i.e., $R_{1}, R_{2}, R_{3}, . . C_{1}$, and C_{2}).
3. Derive the transfer function V_{5} / V_{1} with the switch closed, and compare it with the general transfer function $T_{G}(s)$. What values of $R_{1}, R_{2,} R_{3}$ and R_{4} will yield a high pass response (i.e., $k_{2}=k_{3}=0$, and $k_{1}=1$)?

Procedure

1. Calculate the value of $C=C_{1}=C_{2}$ that yields a cut-off frequency, $f_{o}=5 \mathrm{KHz}$, and a Q value of 1.5 . Use resistance values between $1 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$.
2. Build the biquad circuit shown in Fig. 1 using the closest values of C available. If the value of C is not the same as obtained in part 1 , recalculate the cut-off frequency f_{o}.
3. Apply 1 V , peak-to-peak sinusoidal signal to the circuit, and sweep the frequency from 100 Hz to 15 KHz in step 500 Hz . Keep the switch closed. Measure voltages at the nodes for V_{2}, and V_{5} (as shown in Fig.1). Take more readings at smaller intervals, around the cut-off frequency.
4. Plot graphs of $\left|V_{2}\right|$ and $\left|V_{5}\right|$ vs. frequency and validate the theoretical results expected in items \#1 and \#3 in the pre-lab practice.
