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EXPERIMENT 2 

ACTIVE FILTERS 
 

(EXPERIMENTAL) 
 
 

 

OBJECTIVE 

To design second-order low –pass filters using the Sallen & Key (finite positive- gain) and 
infinite-gain amplifier models. One circuit will exhibit a Butterworth response and the other will 
be based on a Chebyshev response. Scaling techniques will be used to ensure practical 
component values. 
 

INTRODUCTION 

Active filters are constructed using a combination of resistors, capacitors and an active device. 
The active device is usually an op-amp. The main advantages of these filters are: 

-Expensive and bulky coils are eliminated. 
-Arbitrary circuit gain can be realized.  
-High input/low output impedances yield good isolating properties. 

 
Some disadvantages include: 
 -Op-amps require power supplies. 
 -At higher frequencies op-amp gain is reduced considerably. 
 -The circuit is sensitive to component change. 
Two common filter configurations are the Sallen & Key positive gain and the Negative-feedback 
class of filters. In this lab you will design and build, a second –order low-pass Butterworth filter 
using the Sallen & Key model, and a second-order low-pass Chebyshev filter using the Negative-
feedback model. 
 

BUTTERWORTH  RESPONSE 

A Butterworth response exhibits specific characteristics. A Butterworth response has a transfer 
function  
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For a normalized frequency, 1ow  the transfer function is: 
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Where ow = half -power-frequency, and n= number of poles 
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Let oww  , then 5.0)(
2 jwTn , and 707.0)( jwTn , or 

dBjwTn 3)707.0log(20)(log20   

The Butterworth characteristics can be summarized: 
  
 1. )( jwTn  at 0w  is 1 for all n. 

 2. )( jwTn  at 1w  is 0.707 for all n. 

 3. For a large w , )( jwTn  exhibits n-pole roll-off. 

 4. The response is maximally flat, since the first (n-1) derivatives of the Taylor series 
expansion of | |)( jTn  is  zero at 0w  (i.e., DC). 

 

CHEBYSHEV  RESPONSE 

The Chebyshev or equal-ripple approximation has a transfer function: 
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Where )coscos()( 1 wnwCn
     for 10  w  

 )coshcosh()( 1 wnwCn
      for 1w . 

w is the normalized frequency with respect to the pass-band edge frequency wo. 
Tn(jw) is the  thn order Chebyshev polynomial. Therefore: 
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The Chebyshev characteristics can be summarized as follows. 

1. At w  = 0;   
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2. At w  = 1; 
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The magnitude of the Chebyshev  response decreases monotonically in the stop band. Because of 
the ripples in the pass-band the Chebyshev filter exhibits a sharper attenuation in the stopband 
than a Butterworth filter of the same order.  

SALLEN & KEY FILTER   

 
The Sallen & Key low-pass filter which uses a positive gain amplifier is shown in figure 1. 
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A special case of the Sallen & Key model is the unity gain S&K shown in figure 2. 

 

INFINITE GAIN AMPLIFIER   BASED MULTIPLE FEED BACK SINGLE AMPLIFIER 

BIQUADRATIC (SAB)  LOW-PASS FILTER  

The multiple feedback (infinite gain amplifier based) low-pass filter is shown in figure 3. 
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Fig. 1  Sallen & Key Low-pass Model
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Fig. 3  Sallen & Key Low-pass Model Unity Gain
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Fig. 2   Sallen & Key Low-pass Model Unity Gain
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Comment [u1]: Change the figure 
caption to: “Infinite gain multiple loop SAB 
(low-pass) filter”
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SCALING (MAGNITUDE & FREQUENCY SCALING) 

 
A circuit can be designed for practical component values employing magnitude scaling. To 
magnitude scale components the following equations are used. 

oldmnew RKR   

oldmnew LKL   

m

old
new K

CC   

For example if the design value of the capacitor is 0.1µF and you only have 1uF capacitors, then 
you need a scaling factor, 1010/10 76  

newoldm CCK .  

 
A circuit designed for one frequency can be transformed to operate at another frequency by 
employing frequency scaling. The equations for frequency scaling are similar to the magnitude 
scaling equations. With the exception that resistors are not frequency scaled. 
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Where fK ratio of final to initial cut-off frequencies in radians = wf/wi. 

This technique is particularly useful when you design a filter that is normalized for wi= 1ow . 

In this case Kf = wf . 
 

PROCEDURE 

1. Design a second- order Butterworth low-pass filter using the Sallen & Key model (Fig. 1) 
for the cut-off frequency of 10KHz. Design the circuit to operate using 1nF capacitors 
and equal resistors. The pole frequency (cut-off frequency) is given by: 

2121

1

CCRR
wo  .  Apply a 1V peak-peak sinusoidal input signal, starting at 1 KHz 

and sweep through the cut-off frequency to 25 KHz, in steps of 500Hz. Make sure to take 
more readings, at smaller intervals, around the cut-off frequency i.e. from 9 KHz to 
15KHz reduce the interval size to 250Hz. 

2. Design a second-order Chebyshev low-pass filter with a pass-band ripple of 1 dB, using 
the configuration in Fig.3, for the pole- frequency of 10KHz. Design the circuit to operate 
using 10nF capacitors. Apply a 1V peak-peak sinusoidal input signal, starting at 1KHz 
and sweep through the cut-off frequency to 25KHz, in steps of 500Hz. Make sure to take 
more readings, at smaller intervals, around the cut-off frequency,  i.e.: from 9KHz reduce 
the interval size to 250Hz. 

3. Using the frequency scaling technique, re-design and test the filter in step-2 for a cut-off 
frequency of 1 KHz 

 

RESULTS & DISCUSSION 

1. Derive the transfer function   Vout/Vin for the filter circuits in figures 1, 2, and 3. 
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2. Plot experimental and theoretical curves (Vout/Vin) on the same graph for the filters in 
Figs. 2 and 3. 

3. What is the value of Qp produced by your design in procedure step #1? 

 

 

 

 

 

 


