Analog/IC Filter Design (ELEC 441/6081) Mid-Term Test#1 (Winter 2011-2012)

Electrical and Computer Engineering Department Concordia University February 27, 2012

NOTE to UG students: Answer ONLY THREE questions. If you answer more than three questions, the last answer will be discarded (i.e., NOT marked).

Student id#

Time: 60 minutes

Q.1: Figure 1 shows a filter circuit with a voltage amplifier (VCVS) of gain K. Derive the expression for the voltage transfer function (VTF) $V_2(s)/V_1(s)$.

Figure 1

Q.2: Determine the transfer function of a maximally flat low-pass filter with a loss of 1dB at the pass-band edge frequency $f_c = 10$ kHz, and an attenuation of at least 25 dB at $f_a = 40$ kHz.

Q.3: You are required to design a BPF with the pass-band extending from $\omega = 10^5$ rad/sec to $\omega = 4 \times 10^5$ rad/sec. The filter has *equal ripple* characteristic in the pass-band with peak-to-peak value not exceeding 1 dB. At $\omega = 15.263 \times 10^5$ rad/sec, the response must be at least 60 dB down relative to the pass-band.

(a) Synthesize the normalized low-pass filter function associated with the intended band-pass filter.

(b) Show the L, C ladder realization of the normalized low-pass filter terminated in a 1 ohm resistance and fed from an ideal voltage source.

Q.4: Consider the band-pass filter network of figure 4. It combines both positive and negative feed-back around an ideal OA. The voltage transfer function is given by:

$$\frac{V_2}{V_1} = \frac{-s(K+1)/(R_1C_2)}{s^2 + s[1/(R_2C_2) + 1/(R_2C_1) - K/(R_1C_2)] + 1/(R_1R_2C_1C_2)}, \text{ with } K = R_A/R_B.$$

Instructor: Dr. R. Raut page 2 of 3

Assuming K=1, design the element values to meet the specifications: $f_p=10$ kHz, $Q_p=5$ and C=0.1 μ F each.

Filter Function Tables

(next page)

Filter Function Tables

A.1: Coefficients of denominator polynomial, in the form $s^n + a_1 s^{n-1} + a_2 s^{n-2} + ... + a_{n-2} s^2 + a_{n-1} s + 1$, for Butterworth filter function of order n, with pass-band from 0 to 1 rad/sec^{*}.

n	a_{l}	a_2	a ₃	a_4	a_5	a_6
2	1.4142					
3	2.0000	2.0000				
4	2.6131	3.4142	2.6131			
5	3.2361	5.2361	5.2361	3,2361		
6	3.8637	7.4641	9.1416	7.4641	3.8637	
7	4.4940	10.0978	14.5918	14.5918	10.0978	4.4940

A.2: Coefficients of denominator polynomial, in the form $s^n + a_1 s^{n-1} + a_2 s^{n-2} + ... + a_{n-2} s^2 + a_{n-1} s + a_n$, for Chebyshev filter function of order n, with pass-band from 0 to 1 rad/sec⁺.

Pass-band ripple A _n	n	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
	1	2.863					-
0.5 dB	2	1.425	1.516				
	3	1.253	1.535	0.716			
ε=0.3493	4	1.197	1.717	1.025	0.379		
	5	1.1725	1.9374	1.3096	0.7525	0.1789	
	6	1.1592	2.1718	1.5898	1.1719	0.4324	0.0948
	1	1.965					
	2	1.098	1.103				
1.0 dB	3	0.988	1.238	0.491			
ε=0.5089	4	0.953	1.454	0.743	0.276		
	5	0.9368	1.6888	0.9744	0.5805	0.1228	
	6	0.9282	1.9308	1.2021	0.9393	0.3071	0.0689
	1	1.308					
	2	0.804	0.637				
2.0 dB	3	0.738	1.022	0.327			
ε=0.7648	4	0.716	1.256	0.517	0.206		
	5	0.7065	1.4995	0.6935	0.4593	0.0817	
	6	0.7012	1.7459	0.8670	0.7715	0.2103	0.0514

⁺ R. Schaumann et al, "Design of Analog Filters- Passive, Active RC, and Switched Capacitor", Prentice-Hall Inc., © 1990