Conceptual Reference Database for Building Envelope Research Prev
Next

An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system

Koyunbaba, B. K., Yilmaz, Z. and Ulgen, K.
2011
Energy and Buildings, Available online 28 June 2011, ISSN 0378-7788, 10.1016/j.enbuild.2011.06.031., 2011


Koyunbaba, B. K., Yilmaz, Z. and Ulgen, K., (2011), "An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system", Energy and Buildings, Available online 28 June 2011, ISSN 0378-7788, 10.1016/j.enbuild.2011.06.031., 2011.
Abstract:
In this paper, an attempt has been made to validate the simulation model with experimental results of a model BIPV Trombe wall built in Izmir, Turkey. An energy analysis for determining the performance of a BIPV Trombe wall integrated to the fa?ade of a room has been carried out. The analysis is based on transient condition. Computational fluid dynamics (CFD) has been applied to predict the temperature and velocity distribution in the test room model. The simulations for two-dimensional model of BIPV Trombe wall system have been carried out for February 4¨C7th, 2008. The temperature and velocity distribution of the BIPV Trombe wall system are obtained from the simulation results. The simulation results and the measured values of surface temperatures of PV module and thermal wall; indoor, inter-space, inlet and outlet air temperatures have been compared and it is seen that they are in good agreement. The experimental results also show that 10% of solar radiation transmittance has been supplied by using a semi-transparent a-Si solar cell. Thus, thermal energy input to the system increases compared to other BIPV systems. Meanwhile, the experimental daily average electrical and thermal efficiency of this system can reach 4.52% and 27.2% respectively.

Keywords: BIPV Trombe wall; Computational fluid dynamics; Natural ventilation; Solar heat gaina



Related Concepts


Author Information and Other Publications Notes
Koyunbaba, B. K.
     
Yilmaz, Z.
Faculty of Architecture, Istanbul Technical University, Takla, Taksim, 80191, Istanbul, Turkey
  1. Building form for cold climatic zones related to building envelope from heating energy conservation point of view  
Ulgen, K.
     



CRDBER, at CBS, BCEE, ENCS, Concordia,