Conceptual Reference Database for Building Envelope Research Prev
Next

Rainwater runoff from building facades: A review

Blocken, B., Derome, D. and Carmeliet, J.
2013
Building and Environment, Volume 60, February 2013, Pages 339-361
Wind-driven rain; Driving rain; Wind flow; Facade surface soiling; Runoff leaching; Urban heat island


Blocken, B., Derome, D. and Carmeliet, J., (2013), "Rainwater runoff from building facades: A review", Building and Environment, Volume 60, February 2013, Pages 339-361.
Abstract:
Rainwater runoff from building facades is a complex process governed by a wide range of urban, building, material and meteorological parameters. Given this complexity and the wide range of influencing parameters, it is not surprising that despite research efforts spanning over almost a century, wind-driven rain and rainwater runoff are still very active research subjects. Accurate knowledge of rainwater runoff is important for hygrothermal and durability analyses of building facades, assessment of indirect evaporative cooling by water films on facades to mitigate outdoor and indoor overheating, assessment of the self-cleaning action of facade surface coatings and leaching of particles from surface coatings that enter the water cycle as hazardous pollutants. Research on rainwater runoff is performed by field observations, field measurements, laboratory measurements and analytical and numerical modelling. While field observations are many, up to now, field experiments and modelling efforts are few and have been almost exclusively performed for plain facades without facade details. Field observations, often based on a posteriori investigation of the reasons for differential surface soiling, are important because they have provided and continue to provide very valuable qualitative information on runoff, which is very difficult to obtain in any other way. Quantitative measurements are increasing, but are still very limited in relation to the wide range of influencing parameters. To the knowledge of the authors, current state-of-the-art hygrothermal models do not yet contain runoff models. The development, validation and implementation of such models into hygrothermal models is required to supplement observational and experimental research efforts.

This publication in whole or part may be found online at: This link has not been checked.here.
Author Information and Other Publications Notes
Blocken, B.
Laboratory of Building Physics, Department of Civil Engineering, Katholieke Universiteit, Leuven, Belgium. http://perswww.kuleuven.ac.be/~u0008129/
  1. A review of wind-driven rain research in building science
  2. A simplified numerical model for rainwater runoff on building facades: Possibilities and limitations
  3. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation
  4. Driving rain on building envelopes II: representative experimental data for driving rain estimation
  5. Pedestrian wind environment around buildings: literature review and practical examples
  6. Quantification of driving rain as a boundary condition for water flow modelling in building parts
  7. Spatial and temporal distribution of driving rain on a low-rise building
  8. Spatial and temporal distribution of driving rain on buildings: numerical simulation and experimental verification
  9. Validation of external BES-CFD coupling by inter-model comparison
  10. Wind, rain and the building envelope: studies at the Laboratory of Building Physics, KULeuven
  11. Wind-driven rain as a boundary condition for HAM simulations: Analysis of simplified modelling approaches  
Derome, D.
Dominique Derome Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal
  1. Approach for the simulation of wetting due to rain infiltration for building envelope testing
  2. Behavior of wall assemblies with different wood sheathings wetted by simulated rain penetration
  3. Comparaison de m¨¦thodes de mesure de flux de chaleur pour sp¨¦cimens de grandes et moyennes dimensions
  4. Essai sur les toits plats isol¨¦s ¨¤ la fibre de cellulose
  5. Experimental setup for the study of air leakage patterns
  6. Hygroscopic behavior of paper and books
  7. Impact of added insulation on air leakage patterns
  8. Impact of air leakage pattern on reinsulated walls
  9. Large scale testing of two flat roof assemblies insulated with cellulose
  10. Mapping of air leakage in exterior wall assemblies
  11. Methodology and Application of Simulated Wind-Driven Rain Infiltration in Building Envelope Experimental Testing
  12. Methods for the assessment of moisture content of envelope assemblies
  13. Modeling of moisture behavior of wood planks in nonvented flat roofs
  14. Moisture occurrence in roof assemblies containing moisture storing insulation and its impact on the durability of building envelope
  15. Moisture performance of leaky exterior walls with added insulation
  16. Rapport Final Projet Site Internet - L'enveloppe du batiment et l'efficacit¨¦ ¨¦nerg¨¦tique
  17. Review and framework for large-scale laboratory studies on wetting and drying of building envelopes
  18. Study of the reduced impact of thermal bridges in two sprayed-applied polyurethane wall assemblies
  19. Testing of flat roofs insulated with cellulose fiber
  20. The impact of sorption history and hysteresis on moisture pattern in a wood-framed building envelope
  21. The need for an integrated computer-based tool to support building envelope design
  22. Use of an environmental chamber to investigate large-scale envelope specimen hygrothermal performance  
Carmeliet, J.
Department of Civil Engineering Laboratory of Building Physics, Catholic University of Leuven, Belgium
  1. A comparison of different techniques to quantify moisture content profiles in porous building materials
  2. A multiscale network model for simulating moisture transfer properties of porous media
  3. A review of wind-driven rain research in building science
  4. A simplified numerical model for rainwater runoff on building facades: Possibilities and limitations
  5. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation
  6. Description of the moisture capacity of building materials
  7. Determination of the isothermal moisture transport properties of porous building materials
  8. Determination of the liquid water diffusivity from transient moisture transfer experiments
  9. Determination of the moisture capacity of porous building materials
  10. Driving rain on building envelopes II: representative experimental data for driving rain estimation
  11. Microscopic analysis of imbibition processes in oolitic limestone
  12. Modeling fluid flow in fractured media using continuum, network and discrete aproaches
  13. Pedestrian wind environment around buildings: literature review and practical examples
  14. Performance prediction for masonry walls with EIFS using calculation procedures and laboratory testing
  15. Position paper on material characterization and HAM model benchmarking
  16. Simulating non-isothermal water vapour transfer: an experimental validation on multi-layered building components
  17. Spatial and temporal distribution of driving rain on a low-rise building
  18. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground
  19. Wind, rain and the building envelope: studies at the Laboratory of Building Physics, KULeuven
  20. Wind-driven rain as a boundary condition for HAM simulations: Analysis of simplified modelling approaches  



CRDBER, at CBS, BCEE, ENCS, Concordia,