The Gradient and Applications

- This unit is based on Sections 9.5 and 9.6, Chapter 9.
- All assigned readings and exercises are from the textbook

Objectives:
Make certain that you can define, and use in context, the terms, concepts and formulas listed below:
1. find the gradient vector at a given point of a function.
2. understand the physical interpretation of the gradient.
3. find a multi-variable function, given its gradient
4. find a unit vector in the direction in which the rate of change is greatest and least, given a function and a point on the function.
5. the rate of change of a function in the direction of a vector.
6. find normal vector and tangent vectors to a curve
7. write equations for the tangent line and the normal line.
8. find an equation for the tangent plane to a surface

Reading: Read Section 9.5, pages 474-482.
Exercises: Complete problems 9.5 and 9.6
Prerequisites: Before starting this Section you should . . .
- familiar with the concept of partial differentiation
- be familiar with vector functions
Directional Derivatives: definition

- Consider the temperature T at various points of a heated metal plate.
- Some contours for T are shown in the diagram.

- We are interested in how T changes from one point to another.
Directional Derivatives: definition

- The rate of change of T in the direction specified by AB is given by:
 \[(20-15)/AB = 5/h\]
 an example of directional derivative

- In general, for a given function $T = T(x,y)$, the directional derivative in the direction of a unit vector $u = \langle \cos \theta, \sin \theta \rangle$ is

\[
D_u(T) = \lim_{h \to 0} \frac{T(x + h \cos \theta, y + h \sin \theta) - T(x, y)}{h},
\]
where \[h = \sqrt{(\Delta x)^2 + (\Delta y)^2}\]
Directional Derivatives: definition

- The **gradient vector** at a point A
 - magnitude = the largest directional derivative, and
 - pointing in the direction in which this largest directional derivative occurs, is known as the gradient vector.
The gradient vector: \(\text{grad} \)

- A vector field, called the gradient, written: \(\text{grad} \ F \) or \(\nabla F \)
can be associated with a scalar field \(F \).
- At every point the direction of the vector field (\(\nabla F \)) is
 - orthogonal to the scalar field contour (\(C \)) and
 - in the direction of the maximum rate of change of \(F \).

\[
\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}
\]

\(\nabla \) called ‘\(\text{del} \)’
The gradient vector: grad

- Gradient of a Function

Given: \(w = F(x, y, z) \)

\[\therefore \text{grad } F = \nabla F(x, y, z) = i \frac{\partial F}{\partial x} + j \frac{\partial F}{\partial y} + k \frac{\partial F}{\partial z} \]

Example:

Given: \(F = \frac{xy^2}{z^3} \), **Find** \(\nabla F \)
The gradient vector (Cont.)

Key points:

- ∇F direction is the normal vector to the surface
 \[\nabla F \cdot \hat{t} = 0, \quad \hat{t} \text{ is a tangent unit vector to } F \]

- $|\nabla F|$ magnitude gives the rate of change (the slope) (rate of change) of F, when moving along a certain direction.

- ∇F points in the direction of most rapid increase of F.

- $-\nabla F$ points in the direction of most rapid decrease of F.

- F is a scalar field while ∇F is a vector field.

- ∇F is not constant in space.
The gradient vector (Cont.)

- Generalization of **Directional Derivative** in \(u \) direction:

\[
D_u(F) = \nabla F \cdot \hat{u}, \quad \hat{u} = \text{unit vector}
\]

- The **maximum** value of \(D_u(F) \) is \(||\nabla F|| \) and occurs when \(u \) and \(\nabla F \) are in the **same** directions.

- The **minimum** value of \(D_u(F) \) is \(-||\nabla F||\) and occurs when \(u \) and \(\nabla F \) are in the **opposite** directions.

Example: \(F = xy/(x + y); \quad \vec{u} = \langle 6, 8 \rangle \quad \text{Find } D_u(F) \text{ @ } (2, -1) \).
The gradient vector: Some Applications

- Engineers use the gradient vector in many physical laws such as:

1. Electric Field (\mathbf{E}) and Electric Potential (V):
 $$\mathbf{E}(x, y, z) = -\nabla V(x, y, z)$$

2. Heat Flow (\mathbf{H}) and Temperature (T):
 $$\mathbf{H}(x, y, z) = k\nabla T(x, y, z), \quad k = \text{constant}$$

3. Force Field (\mathbf{F}) and Potential Energy (U):
 $$\mathbf{F}(x, y, z) = -\nabla U(x, y, z)$$

Example

Given: $T = 100 - 2x^2 - y$

Find the heat flow vector \mathbf{H}
Insect Example!

- **Temperature Distribution:**

\[T(x, y) = 5 + 2x^2 + y^2 \]

Coolest location: center

What direction the insect should go to cool off the fastest?

(Assuming the insect is familiar with vector analysis and knows the temperature distribution!!)

\[\mathbf{d} = -\nabla T(x, y) = -4xi - 2yj \]

\[= -16i - 4j \]
Equation of Tangent Plane

- A vector normal to the surface \(F(x,y,z) = c \) at a point \(P (x_o,y_o,z_o) \) is \(\nabla F \), and can be denoted by \(n_o \).

- If \(r_o \) is the position vector of the point \(P \) relative to the origin, and \(r \) is the position vector of any point on the tangent plane, the vector equation of the tangent plane is:

\[
\vec{n}_o \cdot (\vec{r} - \vec{r}_o) = 0, \quad \vec{n}_o = \nabla F(r_o) \text{ at } P
\]

- The equivalent scalar equation of the tangent plane is:

\[
(x-x_o)F_x(x_o,y_o,z_o)+(y-y_o)F_y(x_o,y_o,z_o)+(z-z_o)F_z(x_o,y_o,z_o)=0
\]

Example: Surface: \(x^2 + y^2 + z^2 = 9 \), Point: \((-2,2,1)\)
Equation of Normal Line to a Surface

- A vector normal to the surface \(F(x,y,z) = c \) at a point \(P(x_0,y_0,z_0) \) is \(\mathbf{n}_o = \nabla F \).

- If \(\mathbf{r}_o \) is the position vector of the point \(P \), and \(\mathbf{r} \) is the position vector of any point on the normal line, the vector equation of the normal line to the surface is:

\[
\mathbf{n}_o \times (\mathbf{r} - \mathbf{r}_o) = 0, \quad \mathbf{n}_o = \nabla F(\mathbf{r}_o) \text{ at } P
\]

- The equivalent parametric equation of the normal line is:

\[
\begin{align*}
x &= x_0 + t F_x(x_0,y_0,z_0), \\
y &= y_0 + t F_y(x_0,y_0,z_0), \\
\quad z &= z_0 + t F_z(x_0,y_0,z_0)
\end{align*}
\]

Example: Surface: \(x^2 + 2y^2 + z^2 = 4 \), Point: \((1, -1, 1)\)