

NSF

MECHATRONICS ENGINEERING TECHNOLOGY

Modeling a Servo Motor System

TECHNOLOGY

Definitions

- Motor: A device that receives a continuous (Analog) signal and operates continuously in time.
- **Digital Controller:** Discretizes the amplitude of the signal and also operates at discrete time (sample data).

Continued...

- Position Sensor: Operates continuously in time but discretizes the amplitude.
- *Power Amplifier:* Power amplifier, which produces a continuous signal but operates at discrete times.

Elements to be modeled Amplifier Motor & Load **Position Sensor** Controller

Amplifier Motor Modeling

ENGINEERIN TECHNOLOG

Current or Torque Mode Amplifier

 In this type of operation mode, amplifier output current, / that is directly proportional to the input voltage V the proportionality factor K_a

$$l = K_a V \longrightarrow 1$$

• Torque $T_g = K_t I \longrightarrow 2$ where $K_t \rightarrow torque constant$

Moment of Inertia of Solid Disc

mass 'm' and radius 'r':

$$I = \frac{mr^2}{2}$$

Torque = Force x Liver Arm

 $J\alpha = T_f + T_g \rightarrow 3$

$$T = Fr$$

If J is total moment of inertia of load &

motor, T_f is opposing friction,

NSF

Continued....

• Where α is acceleration,

$$\alpha = \frac{d\omega}{dt}$$

Where ω is the velocity,

$$\omega = \int \alpha \, dt \to Taking \, Laplace \, Transform \to \omega = \frac{1}{s} \alpha - - - - 4$$

$$\omega = \frac{d\theta}{dt} \rightarrow \theta = \int \omega \, dt \rightarrow Taking \, Laplace \, Transform \rightarrow \theta = \frac{1}{s} \, \omega - - - - 5$$

MECHATRONICS ENGINEERING TECHNOLOGY

Combining equations 1 through 5

$$\theta = \frac{1}{s}\omega \implies = \left(\frac{1}{s}\right)\left(\frac{1}{s}\alpha\right) \implies = \frac{1}{s^2}\frac{T_g}{J}$$

IECHATRONICS ENGINEERING TECHNOLOGY

Position Sensor Modeling

Position Sensor Modeling

- Motor position is indicated by position sensor as signal 'c'.
- K_f proportionality factor, K_f equals the number of units of feedback per one radian of rotation.
- Encoder provides the position, suppose an incremental encoder generates N pulses per revolution, that the encoder generates output.

MSF

Continued...

- Channels A & B produces 1000 pulses for each encoder rotation.
- As two signals are shifted by one quarter of a cycle, the controller can divide each encoder cycle into four quadrant counts resulting in an effective resolution of 4N counts per revolution or turn. Since each revolution is 2π radians, the resulting encoder gain is 4N

$$=\frac{4 x \ 1000}{2\pi} = 636.537 \frac{counts}{rev}$$

• Thus, 1000 pulse per rev encoder has an equivalent gain of 636 counts/ revolution.

 Another common type of position sensor is the one of binary representation. Total number of positions per revolution is the model for this sensor is:

$$K_f = \frac{2^n}{2\pi} - - - -$$

• For example- For Absolute encoder or resolver with 16-Bit binary position signal has a gain of: $K_f = \frac{2^{16}}{2\pi} = 10,435 \ counts/radians$

IECHN

Modeling a Controller

 The desired position signal is R(t) or simply 'R' actual position is 'C'. Thus position error 'E':

E = R - C

 This position error is used to generate the output signal that drives the motor.

Continued...

 $x_p = (P)(E)$

Error, input

• The proportional term x_p ,

Gain of the proportional part of the controller

Continued...

 $x_d = (sD)(E)$

Error, input

• The derivative term x_d,

Gain of derivative ² controller

• Sum of all three outputs,

$$x = x_p + x_d + x_i$$

NECHATRONICS ENGINEERING TECHNOLOGY

• The Transfer function F(s), relating the output 'x' to position error E is,

$$F(s) = \frac{x}{E} = P + sD + \frac{1}{s}I - - - PID \ Controller$$

IECHNOLOGY

Examples

 Example- Digital to Analog converter resolution, 8-16 bit. DAC having output voltage range -10 V to +10 V:

Solution

Output- -10 V to +10 V

Gain of DAC 'K', equal to the number of volts it produces per unit of 'x' input signal.

- DAC Resolution in 'n' bits, the DAC Gain equals:
 - A 12-Bit DAC has K=0.0048 V/unit

$$K = \frac{20}{2^n} = \frac{20}{2^{12}} = 0.0048 \, V/unit$$

PURDUE UNIVERSITY CALUMET

TECHNOLOCO

MECHATRONICS ENGINEERING TECHNOLOGY

Encoder Gain

$$\left(\frac{4 \times 1000}{(2)(3.1428)}\right) = 636 \ counts/rad$$

NSF

MECHATRONICS ENGINEERING TECHNOLOGY

CALUMET

A Servo Motor System

MECHATRONICS

System with Voltage Amplifier

 There are amplifier that are designed to produce a proportional output, N, rather than current, I. In this case, the amplifier is modeled as a voltage gain K_v

$$U = K_V V \longrightarrow 16$$

 When the voltage U is applied to the motor, it produces a current, I, which depends on the motor velocity angular velocity ω. The circuit equation of the motor is

$$J = rI + sLI + K_e \omega \xrightarrow{17}$$

Note

Motor Voltage includes three terms that represents three physical effects:

• rl, represents the voltage across the resistance, r.

- sLl, represents the voltage across the inductance, L.
- K_e ω, represents the emf indices by the motor that is function of 'ω', angular velocity.

 The dynamic equation 3 can be represented in terms of ω as follows:

$J_{\alpha} + T_{f} = T_{g}$

• Since from equation 4 $\omega = (1/s \alpha)$ therefore $\alpha = s\omega$

$$Js\omega + T_f = T_g \rightarrow 18$$

 Thus we can that dynamic behavior of the motor depends in the operation mode of the amplifier as evidence from the models.

 Combining equation 2 and equation 18 and neglecting T_f, friction factor

Combining equation 17 and equation 19 $U = 1/K_t (s^2 J\omega L + sJr\omega + K_e K_t \omega) - - - 20$

Now factoring ω

$$M(s) = \omega/U = K_t (s^2JL + SJr + K_eK_t) - 21$$

Or,
$$M(s) = 1/(K_e(sT_m + 1) (sT_e + 1)) - 22$$

Where, $T_m = J_r / (K_e K_t)$ and $T_e = L/r$

ENGINEERING TECHNOLOGY

NSF MECHATEONICS

• The overall transfer function representing the combined effect of the motor and the amplifier is derived by combining the equation 5, 16 and 22 which is as follows:

$$\Theta = (1/s) \ \omega - -\sqrt{5}$$

$$U = K_v V - - \sqrt{16}$$

$$M(s) = 1/(K_e(sT_m + 1) (sT_e + 1)) - - \sqrt{22}$$

$$\Theta/V = K_v / K_e s ((sT_m + 1) (sT_e + 1)) ----^{24}$$

EXAMPLE 1

- *Amplifier:* Operating in the current node with the current gain K_a of 0.6 amp per volt.
- Motor- load: Total amount of inertia, $J = 2x10^{-4}$ kg.m² and torque constant K_t = 0.12 Nm/A.
- *Position Sensor:* The position sensor is an incremental encoder with 1000 lines per revolution producing a resolution of 4000 counts/revolution.
- Motion Controller: The motion controller has a 14-bit DAC, and the filter parameter are P=20 and D=0.2.

3

MATHEMATICAL MODEL

- $\Theta/V = K_a K_t / Js^2 = (0.6 A/V) (0.12 Nm/A) / (2x10^{-4} kg.m^2) s^2$ = 360/s²
- The incremental position sensor, according to equation 7 is modeled as:

 $K_f = 4N/2\pi \approx 636$ counts/radian

- The gain of the DAC, K, is given by the equation 14 as:
 K = 20/2¹⁴ = 0.00122 Volts/Count
- Motion controller sensor is given by the equation 10 and 12

$$X/E = P + sD = 20+0.2s$$

IECHN

Engineering

CALUMET

EXAMPLE 2

TECHNO

Solution

Transfer Function of the Controller
 F(s) = 20+0.1s

IECHN

- L(s) = (3103.68/s^s) (0.1s+20)
- = (1000/s²) (636) (0.00488) (0.1s +20)
- $L(s) = (\Theta/V) (K_f) (X/E) (K)$

Open-loop Transfer Function L(s)

 $= (K_a K_f / Js^2) (K_f) (P + sD) (K)$

