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Wing Rib Stress Analysis and Design Optimization 

 

Abstract 

For aerodynamic reasons the wing contours in the chord wise direction 

must be maintained without appreciable distortion. Therefore, to hold the skin-

stringer wing surface to contour shape and also to limit the length of the stringers 

to an efficient column compressive length, internal supporting units are required. 

These supporting units are referred to as wing ribs.  

In the current report, a complete stress analysis for a wing rib subjected to 

different kinds of loading is introduced. Two methodologies for the design of the 

wing rib are presented. The first method is designing the wing rib as a shear 

resistant plate girder that will not buckle nor yield under the applied loads. This 

method is used for the design of the lightly loaded ribs where the web stiffeners 

are omitted and instead a series of standard flanged lightening holes are 

introduced. The second method presents a methodology for the design of a wing 

rib subjected to moderate to heavy loads (bulkheads). The second method is 

based on the incomplete diagonal tension theory. Designing a rib subjected to 

heavy loads to act as a shear resistant plate girder will produce a very massive rib. 

Instead the thickness of the rib will be reduced to the limit to keep it within the 

elastic deformations limit but with less buckling resistibility where the rib is 

forced to be under incomplete diagonal tension field stresses. Uprights are 

introduced to the rib to support rib buckling. A complete stress analysis for the 

wing rib as well as web uprights is presented. The analysis procedure is based on 

theoretical evidence as well as empirical formulations.  

 

Key Words 

Wing-Box, Skin-Stringer Panels, Ribs and Spars, Maximum Shear Flow, Diagonal 

Tension, Incomplete Diagonal Tension, Multi Disciplinary Design Optimization 

(MOD).  
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Section I                                                        Overview 

I-1 Description of the Project: 

The objective of task 6 in the MOSAIC project is to improve the available 

structural analysis modules in the Bombardier Aerospace and perform a 

structural design optimization of the wing box by adding an optimization loop 

around the analysis code. The objective is to design a wing-box more rapidly and 

automatically.  Task 6 is divided into four stages.  

 

Stage I: Optimization of one skin stringer panel: (finished) 

Stage I explained in details the procedure to optimize one skin-stringer 

panel consists of one stringer with one stringer spacing (or pitch) of skin in the 

chord wise direction and the distance between two ribs in the span wise direction. 

Skin-stringer panels on the upper and lower wing covers are considered. The load 

acting on the panels is taken to be constant (i.e. same load acting on all panels) 

which resulted in identical dimensions for all panels. Stage-I provides a 

methodology to obtain the optimum dimensions for a skin-stringer compression 

panel with a minimum mass under six constraints namely crippling stress, 

column buckling, up-bending at center span (compression in skin), down-

bending at supports (compression in stringer outstanding flange), inter-rivet 

buckling and beam column eccentricity. It also provides optimum design 

variables for panels under tensile loading with fatigue life as a design constraint 

with same objective function (Minimum mass for panel). A panel on the lower 

wing cover is designed for Damage Tolerance. (For more details refer to report II 

and III) 

 

Stage II: Load Redistribution: (Finished) 

Stage II presented the methodology for calculating the actual load 

experienced by each skin-stringer panel when arranged on the airfoil profile at 

any span wise section of the wing. The number of stringers required on the upper 

and lower wing covers is obtained by dividing the width of the wing-box by their 

corresponding stringer pitch obtained from stage I. These panels are then re-
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arranged on the actual airfoil profile at certain span wise section. Each panel now 

experiences different magnitude of compressive or tensile load depending on its 

relative location with respect to the centriodal axes of the section. 

The optimum dimensions for panels on upper and lower wing covers are thus 

obtained using stage-I optimization program with the new calculated design load 

which resulted in a different optimum dimensions for each panel according to its 

location. (For more details refer to report IV). 

 

Stage III: Optimization of the Spars and Spar Caps: (In progress) 

This stage is an extension to stage II. In this stage the development of the 

optimization tools to include the spars thickness and web cap dimensions will be 

considered.  

 

Stage IV: FE Model of the wing box: (In Progress) 

After all components are optimally sized, the FE model of the wing box 

will be developed in order to find the stress and deflection distribution and 

evaluate margins of safety. The model is being developed using NASTRAN 2005.1 

environment. 

 

The optimization processes of the four stages are being tested on theDLR-F6 

aircraft wing box. 

 

I-2 DLR-F6 Aircraft Geometry and Wing Details: 
 

The geometry and load details are taken from DLR-F6 aircraft [1]. The 

actual wind tunnel model geometry is shown in Figure (1). 

Axes x, y and z denote the coordinate system for the aircraft body and axes x*, y* 

and z* refer to the wing coordinate system. The wing with nacelle is defined in 

wing coordinate system and is placed in the body system (according to Figure (1)) 

with x and z translations of 13.661 in. and -1.335 in respectively with a dihedral of 

4.787 degrees.  
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Fig. (1) DLR-F6 wind tunnel model geometry [1] 

 

The nacelle is located at 8.189 in. from the wing origin. The projected wing semi-

span is 23.0571 in. The wing is defined by a number of airfoil sections at different 

stations along the wing span as shown in Figure (2). The shape of the airfoil at 

each station is selected based on the aerodynamics and holds the shape of the 

wing. 

In order to test the optimization, the wind tunnel geometry is scaled by a factor 

λ=20 to build an approximately realistic aircraft model. The scaled model 

dimensions of the wing are given below: 

The wing reference area for the scaled model is S=90148 in.2  and the semi-span 

in wing coordinate system is s*= 463.3 in. The average chord length of the wing is 

746.97=avC in. and the mean aerodynamic chord length is 18.111=macC  in.  

y 
y*
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Fig. (2) DLR-F6 wing showing different airfoil sections [1] 

 

Figure (2) a number of airfoil sections that are defined at different η along the 

wing span, where η is the normalized coordinate defined as *

*

s
y

=η  .  

The front spar is usually positioned at 15% of chord and the rear spar at 65% of 

chord measured from the leading edge. The enclosed area between the spars as 

shown is called the wing-box.  
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Section II    

II-1 General: 

The aircraft is constructed primarily from thin metal skins which are 

capable of resisting in plane tension and shear loads but buckle under 

comparatively low values of in-plane compressive loads. The skin therefore is 

stiffened by longitudinal stringers which resist the in-plane compressive loads 

and at the same time resist small distributed loads normal to the plan of the skin. 

For aerodynamic reasons the wing contours in the chord wise direction must be 

maintained without appreciable distortion. Therefore to hold the skin-stringer 

wing surface to contour shape internal structural support units are presented 

which are referred to as wing ribs. 

Figure (3) shows the internal construction of the historical aircraft 727, where the 

lower skin is not installed, showing the wing ribs between the lower and the front 

spars and their extension in the leading edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) 727 aircraft wing with lower skin not installed showing the wing 

ribs [3] 

 

    Wing Rib Stress Analysis 

Leading 
edge 

Wing 
ribs 
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In addition to the wing rib main function of maintaining the wing aerodynamic 

shape, the ribs also are presented for many other purposes that can be 

summarized as: 

1- Limiting the length of the stringers to an efficient column compressive 

strength which increases the skin-stringers stability under compressive 

loads. 

2- Transferring and distribution loads 

All the loads applied to the wing are reacted at the wing supporting points, 

thus these applied loads must be transferred into the wing cellular structure 

composed of skin, stringers spars,…etc and then react at the wing supporting 

points, these applied loads can be summarized as 

a- Aerodynamic loads acting on the skin-stringer panels are 

transferred to the rib webs, which by its roll transfer it to the spars. 

this function requires light ribs. 

b-  Concentrated forces resulting from landing gears and power plants 

support points. These forces should be transferred to the wing 

cellular units in the form of distributed shear flows, this function is 

handled by the wing ribs which requires heavy ribs referred to as 

bulkheads.  

c- Between the forces mentioned in ‘a’ and ‘b’ there are medium forces 

resulting from the flaps, ailerons, fuel tanks supporting points, 

armaments,…etc. 

d- Body forces in the form of gravitational forces (wing structural 

weight) and inertia forces due to wing structural mass. 

3- Redistributing shear forces at discontinuities in the wing in the form of 

cutouts for the landing gears, inspection holes, …etc. 

 

II-2 Construction of the Wing Rib: 

The wing rib extends from the leading edge to the trailing edge of the 

aircraft wing, thus it can be divided into three main parts namely the leading and 

the trailing edges rib portions and the wing box rib portion. Between the three 
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portions, the front and the rear spars are accommodated where the rib is riveted 

into its webs, as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4) Wing rib Construction [3] 

 

The assembly of the rib with the wing skin-stringer panels has different 

configurations. The rib may be riveted, spot welded or glued to the skin along its 

boundary as shown in figure (5). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5) Leading edge wing rib- skin assembly by riveting [3] 
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Wing box 
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In some other cases the rib is notched to host the stringers, as shown in Figure 6 

where the lower flange of the rib is notched to host the stringers of the lower skin. 

 

  

Fig. (6) Leading edge wing rib- skin assembly [3] 

 

Lightening holes may be introduced to the web of the rib for mass reduction, 

accessibility and to form a passage for wiring and fuel pipes. Different kinds of 

ribs and different rib assemblies are required in the aircraft design. Since the ribs 

compose an appreciable part of the wing, an accurate design for the wing rib that 

guarantee the necessary strength with minimum weight.  

In the current report, a complete stress analysis for a wing box rib portion 

subjected to different kinds of loading is introduced. Two methodologies for the 

design of the wing rib are presented. The first method is designing the wing rib as 

a shear resistant plate girder that will not buckle nor yield under the applied 

loads. This method is used for the design of the lightly loaded ribs where the web 

stiffeners are omitted and instead a series of standard flanged lightening holes 

are introduced. The second method presents a new methodology for the design of 

the wing rib subjected to moderate to heavy loading (bulkheads). This method is 

based on the incomplete diagonal tension theory where the rib is forced to be 

under incomplete diagonal tension field. Uprights are introduced to the rib to 

support rib buckling. A complete stress analysis for the wing rib as well as web 

uprights is presented. The analysis procedure is based on theoretical evidence 

supported by empirical formulations. While the third method is a survey on the 
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design methodology suggested by Paul Kuhn, et.al. in their report ‘Summary of 

Diagonal Tension- Part One, NACA Technical Note 2661’ [7]. 

 

II-3 Loads Acting on the Wing Rib: 

  As mentioned before, the wing rib is mainly subjected to three kinds of 

loading 

a) Aerodynamic loads transmitted from the skin-stringer wing panels. 

These aerodynamic loads include lift force, drag force, pitching moment, 

and stringers axial forces components in the rib plane (due to stringer 

inclination in tapered sections).  

b) Concentrated forces transmitted to the rib due to landing gear 

connections, power plant’s nacelle connections, connections to the 

fuselage, connection with the controlling surfaces structures like 

ailerons…etc.  

c) Body forces in the form of gravitational forces and inertia forces due to 

wing structural mass. 

The stress analysis of the wing rib requires a complete identification of all the 

loads acting on its structure. 

 

II-3-1 Aerodynamic Loads: 

Generally, an aircraft flying in air is subjected to aerodynamic loads [2, 3]. 

The lift produced by the aircraft balances its weight and the drag force balances 

the thrust produced by the aircraft as shown in Figure (7).  
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Fig. (7) Lift & Weight and Drag & Thrust balancing the Aircraft  [1] 

 

Figure (8) shows different rotational motions exhibited by an aircraft. Pitching 

moment is expressed about the center of gravity of the aircraft. 

 

Fig. (8) Pitch, Yaw and Roll motions of an Aircraft [1] 

 

The loads experienced by an aircraft wing are usually expressed in terms of 

aerodynamic coefficients [2], namely, the lift coefficient ( LC ), the drag 

coefficient ( DC ), the pitching moment coefficient ( MC ), the normal force 

coefficient ( NC ) and the tangential force coefficient ( TC ). All these coefficients 

are usually calculated by wind tunnel tests since testing an actual aircraft is quite 

cumbersome and expensive. The above coefficients are all defined as below: 
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Sq
LCL
∞

=                                                          (1) 

Sq
DCD
∞

=                                                         (2) 

cSq
MCM
∞

=                                                       (3) 

Sq
NCN
∞

=                                                         (4) 

Sq
TCT
∞

=                                                         (5) 

Where S  is the wing reference area; for airfoils a reference length is required 

rather than an area; thus the chord or length of the airfoil section is used for this 

purpose. ∞q  is the free stream dynamic pressure calculated as: 

2
2
1 Vq ρ=∞                                                      (6) 

Where ρ  and V are the density of air and speed of the aircraft (calculated from 

Mach number, M) respectively. Since the speed of sound varies with the density 

of air, it is required to determine the density of the air through which the aircraft 

is flying. To compute this, the chart shown in Table (1), called the International 

Civil Aviation Organization Table (ICAO) is always used. It can be noticed that as 

the altitude increases, the density of air decreases and so does the speed of sound. 
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Table 1: Variation of density of air and speed of sound with altitude 

 

When a wind tunnel is used to collect aerodynamic data, first the actual lift force 

L is measured then it is converted to a non-dimensional coefficient LC  using 

equation (1). All the complex aerodynamics has been hidden away in the lift 

coefficient. It is noticed that LC  depends on the angle of attack (α ), Mach 

number (M) and Reynolds’s number (Re). To summarize, the lift coefficient it 

becomes a function of three variables,  

LC  = f (α , M, Re)                                                 (7) 

The CFD solution for wing-body-pylon-engine (wing-mounted engine) case 

giving the lift coefficient and pitching moment coefficient for DLR-F6 aircraft 

wing at test conditions of Mach = 0.75; CL=0.5 (CL is the overall lift coefficient); 

o-0.0111=α  and Re = 0.300E7 is given in Tables (2) and (3).  

Altitude (ft) 
 

Density of Air 

( 3/ mkg ) 

Speed of Sound 
(m/s) 

0 1.2249 340.4076 
1000 1.1894 339.2758 
2000 1.1548 338.0926 
3000 1.1208 336.9094 
4000 1.0878 335.7262 
5000 1.0554 334.5429 
6000 1.0239 333.3083 
7000 0.9930 332.1250 
8000 0.9626 330.9418 
9000 0.9332 329.7072 
10000 0.9044 328.5239 
15000 0.7709 322.4021 
20000 0.6524 316.1773 
25000 0.5488 309.7982 
30000 0.4581 303.2647 
35000 0.3798 296.6284 
40000 0.3015 295.1880 
45000 0.2370 295.1880 
50000 0.1865 295.1880 
55000 0.1469 295.1880 
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Table 2 Variation of Lift Coefficient (vs) η  

*

*

s
y

=η  LC  c 

0.1274 0.4328 158.8756 
0.1651 0.4580 149.9319 
0.2029 0.4784 140.9653 
0.2409 0.4908 131.9525 
0.2793 0.4926 122.8697 
0.3180 0.4864 113.6916 
0.3572 0.5141 104.3917 
0.3971 0.5483 94.9413 
0.4377 0.5698 91.3885 
0.4792 0.5899 88.1641 
0.5219 0.6068 84.8560 
0.5657 0.6212 81.4495 
0.6111 0.6340 77.9280 
0.6582 0.6439 74.2717 
0.7074 0.6502 70.4573 
0.7589 0.6553 66.4566 
0.8133 0.6504 62.2348 
0.8711 0.6353 57.7487 
0.9330 0.5861 52.9427 
1.0000 0.4832 47.7443 

 

Tables (2) shows the variation of the local lift coefficient at different stations 

along the wing span where “ LC ” is the local lift coefficient at a specific span 

coordinate and “c” is the local chord length at that span coordinate.  

Figure (9) shows the variation of the lift coefficient along the wing span. From 

table (2) and by using equation (1), the lift force per unit length along the wing 

span can be calculated, as shown in figure (10). 
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Fig. (9) LC  (vs) η  

 

Fig. (10) Lift Force per unit length (vs) η  
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Table (3) Pitching Moment Coefficient about Local Quarter Chord (vs) η  

*

*

s
y

=η  MqcC  

0.1274 -0.0958 
0.1651 -0.0929 
0.2029 -0.0939 
0.2409 -0.0987 
0.2793 -0.1071 
0.3180 -0.1201 
0.3572 -0.1374 
0.3971 -0.1461 
0.4377 -0.1381 
0.4792 -0.1325 
0.5219 -0.1280 
0.5657 -0.1249 
0.6111 -0.1231 
0.6582 -0.1221 
0.7074 -0.1228 
0.7589 -0.1222 
0.8133 -0.1203 
0.8711 -0.1165 
0.9330 -0.1128 
1.0000 -0.1093 

 

Table (3) shows the values of pitching moment coefficient about quarter chord 

length along the wing span. These data are represented graphically in Figure (11). 

From table (3) and by using equation (3), the pitching moment about quarter 

chord length can be calculated, as shown in Figure (12). 
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Fig. (11) MqcC  (vs) η  

 
 

Fig.(12) Total Pitching Moment (about Quarter Chord) (vs) η  

Integration of the curve in Figure 10 along the spanwise direction gives the shear 

force distribution on the wing as shown in Figure 13. The bending moment 

distribution along the wing span can also be obtained by integrating the shear 

force distribution as shown in Figure (14).  
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Fig. (13) Shear Force (vs) η  

 

Fig. (14) Bending moment (vs) η  
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It is important to mention that the lift force is also varying in the chordwise 

direction as well as its variation along the wing span, due to the aerodynamic 

pressure variation along the chord as shown in Figure (15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15) The pressure coefficient distribution for the NACA 0012 transonic airfoil 

[8] 

 

Where pC  is the aerodynamic pressure coefficient, “ *x ” is the coordinate along 

the wing chord and the “c” is the local cord length.  

The pressure coefficient can be calculated using following equation 

∞

∞−
=

q
PP

C p                              (8) 

Where ‘ P ’ is the local static pressure; ∞P  is the free stream pressure and ∞q  is 

the dynamic pressure. 

For sure this pressure variation along the chord length results also in a variation 

in the lift force distribution along the chord, which by its role changes the 

pC

cx /*
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resulting shear forces and bending moments acting on the rib cross-section as 

shown in figure (16).  

 

Fig. (16) General representation of the shear force and bending moment 

distribution acting on a wing rib [4]. 

 

But as an approximation, the resultant lift forces acting on certain cross-section 

along the wing span will be considered as concentrated force acting at the quarter 

chord length.  

The loads calculated in Figures (13) and (14) are still not the actual DESIGN 

loads. They need to be scaled up by applying suitable scaling factors as these 

loads are too small to use for sizing the wing rib. The conditions of Mach = 0.75; 

CL=0.5 and Re = 0.3E7 is a cruise condition. Hence, a design condition of 2.5g 

maneuver is considered here and the obtained loads are multiplied by a factor 2.5 

to make them the actual DESIGN loads. Also an additional safety factor of 1.5 is 

applied over these loads.  

All these external aerodynamic loads will be resisted by internal reactions in the 

wing structure. The design of the stiffened panels is based on the assumption that 

the stringers are the members which are responsible about the bending 

resistance, while the skin is designed to just carry in plane stresses in the form of 

in plane shear stresses and tensile stresses, but its resistance to compressive 

stresses is very limited due to its instability under slightly compressive loads. The 

variation of the bending stress along the stiffened panels will generate a flexural 

shear flow in the plane of the airfoil.  
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Z 

Z

 

 Calculation of Shear Flow: 

Unsymmetrical beam sections are very common in aircraft structure, 

because the airfoil shape is generally unsymmetric. 

Considering a transversal load ‘P’ acting on an usymmetric cross-section passing 

through its shear center (i.e. the section is free of twisting), as shown in Figure 

(17) 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17) Unsymmetrical cross-section of a straight cantilever beam [3] 

 

Since this is an unsymmetrical cross-section beam, it is expected that its cross-

section will warp under the effect of bending shear stresses, according to Saint-

Venant’s theory, but for simplification it is assumed here that the section is 

restrained of warping. Recalling from report (4), the equation of the bending 

stress in beams with unsymmetrical cross-sections, based on simple beam theory,  

x
III

IMIM
z

III
IMIM

xzzx

xzxxz

xzzx

xzzzx
b 22

)()(
−

−
−

−

−
−=σ           (10) 

Based on this equation, there are four methods, so far, for the derivation of the 

shear flow equations in beams with unsymmetrical cross-sections subjected to 

flexural shear stress namely, the principle axes method, the neutral axis method, 

the K-Method and the ( P∆ )-Method. The first three methods are dedicated for 



 27

beams with unsymmetrical but constant cross-sections along its span, i.e. its 

inertia moments are constant along the span while the fourth one is dedicated for 

beams with unsymmetrical and inconstant cross-sections (tapered sections). 

Following is a brief definition of each method. 

 

Method One: The Principle Axis Method 

This method is used for the calculation of the shear flow in beams with 

unsymmetrical but constant cross-sections. It is based on the calculation of the 

shear flow due to principle stresses. It is known that the product area moment of 

inertia ‘ xzI ’ is zero with respect to the principle axes, then equation (10) becomes 

zp

pzp

xp

pxp
b I

xM
I

zM
−−=σ              (11) 

From this equation, the equation of the shear stress acting on the cross-section 

will be 

∫∫ −−= dAx
tI

V
dAz

tI
V

p
zp

xp
p

xp

zp
bτ          (11-a) 

Where ∫ Az p  and ∫ Ax p  are the first moments of area with respect to the X-X and 

Z-Z axes respectively and ‘t’ is the thickness of the beam. These area moments of 

inertia can be calculated by superposition in case of composite cross-section 

areas. 

From equation (11-a) the shear flow in the cross-section can be expressed as 

∑∑ −−= Ax
I
V

Az
I
V

q p
zp

xp
p

xp

zp
b         (11-b) 

 

Method Two: The Neutral Axis Method 

This method is used for the calculation of the shear flow in beams with 

unsymmetrical but constant cross-sections. It is based on the calculation of the 

shear flow due to stresses about the neutral axis of the cross-section N-N. Simply, 
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by resolving the stress obtained in method one into the neutral axis direction, the 

equation of the bending stress becomes 

n

nn
b I

zM
=σ                                       (12) 

Where )(sin)(cos 22 aIaII zpxpn += , )sin()cos( φφ xzzn −=  and 

)tan()tan( θ
zp

xp

I
I

a −=  where ‘θ ’ is the angle formed between the transversal load 

and the ‘ Z ’ axis while ‘a’ is the angle formed between the neutral axis and the ‘X-

X’ axis, as shown in Figure (16). 

From equation (12), the equation of the shear flow can be written as 

∑= Az
I
V

q n
n

n
n           (12-b) 

Where ‘ nV ’ is the shear force in the N-N direction. 

 

Method Three: The K-Method: 

This is the most widely used method for the calculation of the shear flow in 

beams with unsymmetrical and constant cross-sections. It is directly based on 

equation (10). From equation (10), it is possible to derive the equation of the 

flexural shear flow in the form 

∑∑ −−−−= zAVKVKxAVKVKq xzzx )()( 1213           (13) 

Where    21
xzzx

xz

III
I

K
−

= ,           22
xzzx

z

III
IK
−
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x

III
I

K
−

=  

 

Method Four: The ( P∆ )-Method (for tapered 

sections): 

In airplane wing and fuselage structures, the common case is a beam of 

non-uniform section in the flange (stringer) direction. Figure (17-a) shows a 

single cell distributed flange beam. Consider the beam acts as a cantilever beam 
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with the bending moment existing at section (A) being greater than that existing 

at section (B) and that the bending moment produces compression on the upper 

surfaces. Using equation (10), the bending stress on each stringer can be found, 

which if multiplied by the stringer area gives the stringer axial load, as shown in 

the figure. Imagine the upper sheet panel 2-2 ' , 3-3 '  is cut along the line (a-a). 

Furthermore consider stringer number (3) cut out and shown as a free body in 

Figure (17-b).  

 

Fig. (17-a) Non-uniform beam cross section [3] 

Let yq be the average shear flow per inch over the distance d on the sheet edge 

bb. For equilibrium of this free body, ∑ = 0yF , hence 03 =+∆ dqp y                                

then, 

dpqy /3∆−=                           (14) 
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Fig. (17-b) Free body diagram of panels [3] 

Figure (17-b-b) shows a free body diagram including two stringers or flange 

members. Again writing equilibrium in y direction gives dppqy /)( 43 ∆+∆−=          

Therefore starting at any place where the value of yq  is known, the change in the 

average shear flow to some other section equals, 

∑∆
−=

d
pqy                                                    (14-a) 

If the summation is started where yq  is zero then equation (14-a) will give the 

true average shear flow yq . Then the shear flow in the section at point ‘n’ can be 

represented generally as 

∑ =
∆

−= n
i

i
ony d

p
qq 1               (15) 

 Figure (17-b-c) shows sheet panel (3, 3
'
, 4, 4

'
) isolated as a free body. Taking 

moments about corner 4 '  and equating to zero for equilibrium, gives 

bdq
d

bpd
M x−

∆
=∑ )( 3

'4
 where dpqx /3∆= . Thus for rectangular sheet panels 

between flange members the shear flow xq  or zq  equals the average shear yq .  
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Consider an element of the wing of length ‘dy’ extending from station ‘j’, located 

at an arbitrary station ‘ jη ’ along the wing span, to station ‘j+1’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (18-a) Airfoil cross-section at an arbitrary ‘η ’ along the wing span  

(Station-j) 

Note that the superscripts in load notation belong to the station while the 

subscript belongs to the direction of that load. 

Viewing this element in the spanwise direction shows the airfoil cross-section 

with the distribution of ‘Z’ stingers on the upper and lower skins at an arbitrary 

wing station η . 

The side view of this element (either in the X-Y plane or Z-Y plane) can be seen as 

a tapered beam extending from station ‘j’ to station ‘j+1’, as shown in the 

following figure (for the Z-Y projection and by analogy the X-Y can be deduced) 
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Fig. (18-b) side view of the wing element ‘dy’ extending from station ‘j’ to 

station (j+1) along the wing span 

 

In figure (18-a), three main points are defined  

 The quarter chord point (qc). 

This point is located at distance 
4
c

 measured from the leading edge in the 

horizontal direction, where ‘c’ is the local chord length at that wing station. 

Since the front spar is located at 0.15c measured from the leading edge, then 

the quarter chord is located at distance 0.1c relative to the front spar.  

 The centroid of the airfoil cross-section (o) 

 The shear center of the airfoil cross-section (sc) 

Also there is a local coordinate system ( jijiji zyx ,,, ,, ) with its origin 

),,(
*

,
*

*

, jijji ZsX
−−

η  located at the centroid of an arbitrary ‘Z’ stringer (i) in station (j) 

where this origin is defined with respect to the wing coordinate system, as shown 

in the figure. 

The section is subjected to general arbitrary loading that are located at the shear 

center, as shown in the figure 

Station (j) Station (j+1) 

i-stringer 

)( 1
*

jjsdy ηη −= +  
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,
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η  
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−
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 Two shear forces: a vertical shear force ‘ j
ZV ’ and a horizontal shear force 

‘ j
XV ’. 

 Twisting moment ‘ jM ’. 

 Bending moment ’ j
bxM ’ and j

bzM . 

 

Calculation of section centroid: 

Since the stringers are assumed to carry the bulk of bending in skin-stringer 

sections, only the areas of the stiffeners are used in calculating the section 

centroid. 

Recalling from the first report the details concerning the ‘Z’ stringer 

 

Fig. (19) Panel geometry definition using ‘Z’ stringer [5] 
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‘ stA ’ is the stringer cross-section area, and it can be represented as 

( ) f
w

fwfwst t
t

bttbA ⎟
⎠
⎞

⎜
⎝
⎛ ++−=

2
2             (17) 

And ‘ eb ’ is the effective width of the skin [5], where, 

sk

sk
se

E
Ktb

σ
η

=                                                 (18) 

where ‘K’ is the skin buckling coefficient and it takes the values 

11032.64062.3 >=<=
s

s

s

s
t
b

forKor
t
b

forK   

Between the above values there is a gradual transition, as plotted in this figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (19) Variation of compression panel skin buckling constant with skin cross-

section aspect ratio [12] 

 

‘η ’ in equation (18) is the plasticity reduction factor which is determined using 

the following equation 

sk

skt

E
E

=η                           (19) 
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Where ‘ skE ’ and ‘ sktE ’ are the elastic and tangent modulii of the skin, 

respectively While ‘ skσ ’ is the skin axial stress.  

For practical use, the design curves for the skin stringer panels can be used, 

where 

L
Nindexloadofvalueslowfor

b
b

L
Nindexloadofvaluehighfor

b
b

e

s

e

s

3.1:1.1

1

=

=

        (20) 

Where ‘N’ is the axial load intensity, and it can be calculated using the equation 

shsc
bMN =                (21) 

And ‘L’ is the effective column length, or the distance between two successive 

ribs. 

All the coordinates defined in the previous figure is in the wing coordinate system 

),,( *** zyx . 

Using equation (17) the cross-section area of the ith stringer can be calculated as 
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Since it is assumed that the load variation along the wing chord will be 

considered constant (i.e. the dimensions of the stringers at certain wing station 

will be constant) then the subscript ‘i’ in the previous equation can be eliminated. 

For an airfoil cross-section with n-stringers, the centroidal coordinates will be 
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Where 
*

, jiX
−

 and 
*

, jiZ
−

 are the coordinates of of the ith stringer cross-section 

centroid at the jth wing station with respect to the wing coordinate system 

),,( *** zyx . While 
*

jX
−

 and 
*

jZ
−

 are the coordinates of the wing-box section 

centroid with respect to the wing coordinate system. 

 

Calculation of section moments of inertia: 

The inertia moment of the total section can be calculated, where 
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Where 
jiX

I
,

−  and 
jiZ

I
,

−  are the local area moment of inertia of the ith stringer in 

the jth station, with respect to its local centroidal axes. For ‘Z’ stringers, the 

expressions for 
jiX

I
,

−  and 
jiZ

I
,

− are 
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It is noted that the local product moment of inertia is zero, since the ‘Z' stinger 

has centroidal axes of symmetry. 
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Calculation of shear flow in the cross-section due to 

the shear forces j
XV  and j

ZV   

As mentioned before there are different method for the calculation of the shear 

flow in unsymmetrical sections. The K-method is widely used but it is not strictly 

accurate in beams with tapered shape along the wing span. But it gives results 

with an acceptable approximation. For tapered sections which is a common case 

in aircraft structure the ( )P∆  method is much more accurate than the K-method 

since it considers the variation of the elastic properties of the structural sections 

in the calculation. Following is a brief description of using the two methods in 

calculating the shear flow in the section shown in figure (18-a). 

 

The K-Method 

Substitute the inertia moments obtained in equation (24) into equation (13) 
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This equation gives the general formula for the shear flow in the wing box jth 

station Where 21
−−−−

−−

−
=

jZjXjZjX

jZjX

III

I

K , 22
−−−−

−

−
=

jZjXjZjX

jZ

III

I

K , 23
−−−−

−

−
=

jZjXjZjX

jX

III

I

K                 

The calculation of the shear flow with respect to an external shearing force 

requires starting the calculation from a point where the shear flow is known. 

Accordingly, assume that the skin between stinger (i-1) and stinger (i) is cut. This 

way the shear flow in the skin extending between those two stingers becomes 

zero. Then the shear flow in the skin extending between stringer (i) to stringer 

(i+1) can be expressed as 
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After calculating the shear flow around the cross-section, return the skin 

previously removed between stingers (i-1) and stinger (i), then the present value 

of the shear flow is not the actual value. Since the previous shear flow is 

calculated for an open cross-section, which is not the case. Accordingly, a further 

analysis is needed to calculate the actual value of the shear flow for a closed 

section. 

The twisting angle of a section can be expressed as 

( ) ( )
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1
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11
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1 n

i jii

jiijii

sj
j t

sq

GA
θ            (27) 

Where ‘ sjA ’ is the area of the wing-box cross section at the ‘jth’ station, ‘ ( ) jiis 1+→ ’ 

is the distance between stringer (i) and stringer (i+1), ‘G’ is the shear modulus of 

the skin material and ‘ ( ) jiit 1+→ ’ is the skin thickness between stringer (i) and 

stringer (i+1) in the jth station. 

Since the shear forces are passing through the shear center which implies that the 

section is not subjected to any kind of twist due to these shear forces (i.e. the 

section twisting angle is equal to zero). 

Now, assume that there is a constant shear flow ‘ 0q ’ acting around the cross-

section in the positive clockwise direction, in addition to the shear flow calculated 

previously for the open section. Substituting in equation (27) and equate it to 

zero, the value of ‘ jq ,0 ’ can be obtained. Then the actual shear flow around the 

cross-section between the ‘i’ and the ‘i+1’ stringers is equal to 

( ) ( ) jjiijii qqq ,01
'

1 += +→+→          (27-a) 

If the shear center coordinates are already calculated then the secondary shear 

flow ‘ jq ,0 ’, calculated in the previous step, can also be calculated by considering 

the moment equilibrium of the internal loads represented by the shear flow ‘ 'q ’ in 

addition to the constant shear flow ‘ 0q ’ around the whole section, with the 

external loads acting on the cross-section. Since all the external loads, j
ZV  and 

j
XV  are passing through the section shear center, then considering moment 
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equilibrium with respect to the shear center will eliminate the moment 

component of these external forces. While the moment of the shear flow with 

respect to the shear center can be calculated using the equation 

02 ,0' =+∑ jsjjq qAM                        (28) 

Where ‘ sjA ’ is the area of the wing-box cross section at the ‘jth’ station while 

∑ '
jqM is the summation of the moments of the shear flow '

jq  between two 

adjacent stringer, which can be calculated as 

( ) ( )∑∑ +→+= jiijiijq qAM 1
'

1,' 2        (28-a) 

Where ( ) jiiA 1, +  is the area enclosed between the skin between stingers ‘i’ and ‘i+1’ 

and the two lines extending from each stringer to the shear center of the cross-

section.  

It is advantageously to note that, if the external twisting moment ‘ jM ’ acting on 

the cross-section, shown in figure (18-a), is included in equation (29) of moment 

equilibrium, then the global shear flow around the section can be calculated. 

Then equation (29) can be written as 

02 ,0' =++∑ jsj
j

jq qAMM        (28-b) 

 

The ( P∆ )-Method 

This method is accurate for shear flow calculations in tapered sections which is 

the case presented here. 

In this method the axial forces in stringers at two wing stations should be 

calculated. Considering stations (j) and (j+1), the axial forces in the stingers at 

the two stations can be obtained by calculating the bending moment in each 

stringer at each station, then multiplying the bending moment by the area of each 

stringer gives the axial force in the stinger. 

Recalling equation (10), the bending moment in the ith stringer in the jth station 

can be calculated as 
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Then, the axial force acting on the ith at that wing station is 

jist
ji

bji AP ,
,

, σ=          (29-a) 

By the same manner the axial force in the ith stringer in the ‘j+1’ station can be 

represented as 

1,
1,

1, +
+

+ = jist
ji

bji AP σ          (29-b) 

Then the variation in the axial force along the ‘ith’ stinger along the stations ‘j’ and 

‘j+1’ is 

jji PPP −=∆ +1              (30) 

Substituting in equation (17-a), then the average shear flow ‘
nyq ’ can be 

calculated as 
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Based on the equality of the shear flow in all directions at certain point inside 

continua, then the shear flow in the skin extending between stinger ‘i’ and stinger 

‘i+1’ in the ‘j’ wing station will be 

( ) ( ) ( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

∆
−+=

+
→−+→ **

1
*

'
1

'
1

jj

i
jiijii

s
P

qq
ηη

       (31-a) 

It is clear that the calculation of the shear flow should begin at a point where the 

value of the shear flow is known. Accordingly, assume that the skin between the 

‘i-1’ and the ‘i’ stingers is cut, that makes the value of '
1 iiq →−  is equal to zero, 
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which enables the use of the previous equation. As mentioned before, these 

values of shear flow distribution obtained by the previous equation is not the 

actual value. To obtain the actual value, an additional constant shear ‘ oq ’ flow 

around the whole cross-section will be applied, where the total actual shear flow 

between adjacent stringers can be calculated as 
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       (31-b) 

While the value of ‘ oq ’ can be obtained as discussed in the K-method. 

      

Calculation of the shear center coordinates: 

The shear center is a geometrical property of the cross-section. It is the point on 

the cross-section that if a shear force is passing through will not twist the section. 

Accordingly, if there is a force acting on the cross-section that is not passing 

through its shear center, then the effect of that force on the cross-section can be 

split into two parts, 

1) flexural shear effect due to the shear force 

2) torsional shear effect due to the twisting effect of that force on the 

cross-section, this twisting moment takes the value of ‘Ve ’ where ‘V’ is 

the shear force and ‘e’ is the perpendicular distance between the cross-

section shear center and the line of action of the shear force. 

 

The shear center coordinates can be obtained with respect to any reference point 

on the cross-section. Since the section centroid is already defined, then the shear 

center can be calculated with respect to it 

To calculate the shear center coordinates, 

1) the horizontal location of the shear center ‘ jXe ’: 

‘ jXe ’ is the horizontal distance between the cross-section centroid and its 

shear center. To find this distance:  
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a) Assume that there is only one vertical shear force ‘ j
ZV ’ acting on the 

cross-section passing through its shear center ‘sc’. 

b) Calculate the shear flow around the cross-section in terms of this 

shear force, as explained previously. 

c) Calculate the moment of the external shear force ‘ j
ZV ’ with respect 

to the section centroid and equate it to the moment of the shear  

flow with respect to the same point. 

jX
j

Zjq eVM ,=∑                                     (32) 

Where ∑ jqM  is the moment of the shear flow with respect to the section 

centroid, which is computed using the equation (28-a). 

 

2) the vertical location of the shear center ‘ jZe ’: 

‘ jZe ’ is the vertical distance between the cross-section centroid and its shear 

center. The same procedure can be used to find this distance, where:  

a) Assume that there is only one horizontal shear force ‘ j
XV ’ acting on 

the cross-section passing through its centroid ‘o’. 

b) Calculate the shear flow around the cross-section in terms of this 

shear force, as explained previously. 

c) Calculate the moment of all these shear forces with respect to the 

section centroid and equate it to the moment of the shear force with 

respect to the centroid. 

jZ
j

Zjq eVM =∑                                     (33) 

 

 

 

 

 

 



 43

Calculation of wing station external loads: 

As previously defined, the ‘jth’ wing station is subjected to three type of 

loading 

 

1. Shear forces in the form of: 

a. Vertical shear force j
ZV  

This vertical shear force includes: 

(i) The total lift summation from the wing tip till the ‘jth’ wing 

station which can be obtained from figure (13) for the DLF-6 

aircraft. This value of shear force obtained from figure (13) must 

be multiplied by maneuvering condition factor plus safety factor 

for load and calculation tolerances. 

(ii) Wing structural weight (body forces) included in the wing 

portion extending from the wing tip till the ‘jth’ station. It is 

important to note that in the conceptual design stage the size of 

the wing parts is not yet determined. Accordingly, the weight of 

the wing portions will not be available. Alternatively, an 

approximate value for the distribution of the wing weight along 

the wing span can be obtained from previously designed 

airplanes, or the weight may not be included in the initial sizing 

process, then it can be included later then an iteration design 

process can be conducted for a suitable convergence for the wing 

weight. 

Example on weight estimate: the wing semi-span of the aircraft 

under consideration, DLR-F6, is ‘ .3.463* ins = ’, based on that data for 

an aircraft with approximately similar dimensions can be obtained. 

The Boeing 737-500 has a semi span length of 466.2 in. as shown in 

the next figure 
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Boeing 737-500 main dimensions 

Using weight statement of this aircraft, then the weight of the total 

wing system 12,255 lbs. using this weight with the length of the wing 

span, an approximate value for the wing weight, as a uniformly 

distributed load acting downwards along the wing span through 

acting along sections centroid, can be calculated and applied along 

the  which in this case will be (12 lbs/in.). 

(iii) Inertia forces (body forces), where the mass of the wing portion 

structure must be multiplied by the acceleration of flight in the 

vertical direction. 

(iv) Non-structural mass forces due to the fuel tank weight…etc. in 

the form of weight and inertia forces. 

94ft 9in 

17ft 2in 

36ft 6in 

101ft  
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b. Horizontal shear force j
XV  

This horizontal shear force includes: 

(i) The total drag summation from the wing tip till the ‘jth’ wing 

station. This value of the drag force obtained from wind tunnel 

calculations must be multiplied by maneuvering condition factor 

plus safety factor. 

(ii) Inertia forces (body forces), where the mass of the wing portion 

structure must be multiplied by the acceleration of flight in the 

horizontal direction. 

(iii) Non-structural mass forces due to the fuel tank mass…etc. in the 

form of inertia forces. 

 

2.   Twisting moment   

As previously defined the wing station is subjected to twisting moment ‘ jM ’ 

the sources of this twisting moment are 

(i) The pitching moment j
qcM . The pitching moment about quarter 

chord location for DLR-F6 can be obtained from figure (12). It is 

important to note that the value of the pitching moment 

obtained from figure (12) must be multiplied by a factor of safety 

as well as a maneuvering conditions factor to obtain design 

loads. 

(ii) Twisting effect of lift forces. 

The lift force is always calculated with respect to the aerodynamic 

center of the wing cross-section which with an acceptable 

approximation considered as the airfoil quarter chord location. This lift 

force at the quarter chord has a twisting effect with the value of jX
j

Z eV . 

(iii)     Flange forces twisting moment ‘ j
fM ’: 

As shown in figure (18-b), the aircraft has a tapered wing, which 

implies that the stiffeners are not perpendicular to the airfoil cross-
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section but they have inclination angle in the Y-Z plane as well as in the 

Y-X planes. These inclinations generate a flange force components in 

the three space directions j
iXfF
,

, j
iYf

F
,

 and j
iZf

F
,

. 

In the calculation of the shear flow around the airfoil cross-section the 

in-plane forces are of quite importance to the calculations. j
iXfF
,

 and 

j
iZf

F
,

 are the ‘ith’ stringer in the ‘jth’ wing station flange forces in the X 

and Z directions respectively. These forces are generating a flexural 

shear effect as well as a twisting effect on the airfoil cross-section.  

(iv)     Twisting effect of the drag forces: 

the general shape of the airfoil is shown in figure (18-a) and the drag 

forces are always considered as acting horizontally through the quarter 

length of the airfoil chord line, as shown in the following figure 

 

 

Fig. (20) Airfoil main lines 

If the line of action of the drag forces is not passing with the airfoil shear center, 

then a twisting effect takes place with magnitude jZ
j

X eV . 

(vi)     Twisting effect wing portion weight: 

Once the wing weight included in the design process, a twisting effect 

of the wing portion weight must be introduced, the magnitude of this 

twisting moment is ‘ 0eW j ’ where jW  is the weight of the wing portion 

extending from the wing tip till wing station ‘j’ and 0e is the horizontal 
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distance between the airfoil centroid and shear center at that wing 

station. 

 

II-3-2 Concentrated Loads: 

The design of the ribs is based on the assumption of the idealized beam, that 

the stiffeners are the responsible about carrying the entire axial load, while the 

shear webs are just loaded in pure shear. Accordingly, the arrangement of the 

stiffeners in the web differs according to the location and direction of the 

concentrated force acting on the rib. The following is a summary for different 

cases of concentrated loads and the corresponding stiffeners arrangements: 

1) If the concentrated force is applied in the plane of the rib, then the 

stiffener should be aligned with the line of action of the force. 

2) If placing the stiffener to be aligned with the load is impossible due to 

some openings in the rib, cutouts…etc, then placing two inclined stiffeners 

is also acceptable, since each stiffener will carry a component of the load in 

its direction. 

3) If the load is out of plane of the rib, then placing three stiffeners 

perpendicular to each other is also acceptable since each stiffener will 

carry a component of the force in its direction, as shown in figure (21) 

 

 

 

 

 

 

 

 

Fig. (21) the stiffeners arrangement in a shear web subjected to out-of-plane 

concentrated force [3] 
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τ

τ−

τ−  τ

τ  

4) If the load is normal to the web, then design of stronger flanges to carry 

the load in bending then transfer it to the web. 

 

 Calculation of Shear Flow due to  concentrated 

forces: 

In a similar manner as mentioned in the previous section, the 

concentrated load will be resolved in the ‘x’ and ‘z’ directions then it will be added 

to the shear force components mentioned previously. 

 

II-4 Shear Panel Stability: 

As mentioned before the design of the shear panels, like the wing rib 

panel, is based on the assumption of the idealized beam theory, that the panels 

are always loaded in pure shear. 

Using Mohr circle, it is easy to conclude that if a point in a structure is subjected 

to pure shear, it will have two principle stresses at planes forming 45o with the 

plane of the shear stress. One of these two principle stresses is in tension and the 

other one is in compression and the magnitude of the two stresses is equal to the 

magnitude of the shear stress, as shown in figure (22) 

 

 

 

 

 

 

 

Fig. (22) Element of Structure subjected to pure shear [11] 

 

So it is important to note that once the value of the compressive principle stress 

reaches certain critical value, the panel will buckle.  
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II-4-1 Thin Plate Buckling: 

  A thin plate is a flat sheet of material, the thickness of which is very much 

smaller than its lateral dimensions. 

Figure (23) shows an ‘a’ by ‘b’ buckled rectangular plate of uniform thickness ‘t’. 

the middle surface of the plate, the surface lies in between the top and the bottom 

surfaces, is initially in the x-y plane. The opposite edges of the plate, the edges at 

‘x=0’ and ‘x=a’ are simply supported while the other two edges are free. The 

simply supported edges are subjected to uniform compressive stress crσ .  

 

Fig. (23) Buckled shape of a plate buckled with unsuspended sides and loaded in 

compression on its simply-supported ends [11] 

 

Thin plates are capable of supporting loads normal to its surface in addition to 

membrane forces that lie in the plane of the plate. But, compressive in-plane 

stresses cause the plate to buckle at stresses much lower than its yielding stress 

limit. 

It is very important to determine the value of the stress at which the plate starts 

buckling, because the structure at that value is considered as an unstable 

structure and post buckling analysis should takes place because of the 

redistribution of stresses. 
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a

z z

Since the magnitude of the compressive stress acting on the plate in Figure (22) is 

the critical buckling stress value, buckling will take place.  

Viewing this plate in the x-z plane, it will look like a pined-pined column, as 

shown in figure (24). 

 

 

 

 

 

 

Fig. (24) pined-pined column before and after buckling [11] 

 

After buckling, the column can be considered as a simple beam in bending, using 

simple beam theory, and neglecting the shear, the equation of motion of this 

column will be, 

02

2
=+ νν

z

cr
EI
P

dx
d

                        (34) 

Where ‘ν ’ is the lateral displacement of the column in the x-z plane. 

The solution of this homogenous differential equation is  

xBxA λλν cossin +=             (35) 

Where 
y

cr
EI
P

=λ , while A and B are constants to be determined from boundary 

conditions. 

Applying the boundary conditions, will lead to the results that 

2

2
2

a

EI
nP y

cr
π

=                          (36) 

Where ‘n’ is the buckling mode. Since we are interested in the first buckling 

mode, then 2

2

a

EI
P y

cr
π

= . 

Applying this critical value of the buckling load into the plate in figure (23), then 
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F…free 
C…clamped 

1C  

2

22

12a
Et

bt
P

A
P crcr

cr
πσ ===             (37) 

The use of equation (37) in the case of a plate is not strictly correct, because in the 

simple beam theory the Poisson’s effect is neglected, which can not be neglected 

in the case of a plate. Therefore, equation (37) is modified to the following 

equation 

2

2

2

1
)1(12

⎟
⎠
⎞

⎜
⎝
⎛

−
=

a
tECcr

ν
πσ                         (38) 

Where ‘ 1C ’ is a factor depends on Poisson’s ratio as well as the aspect ration of 

the plate ‘a/b’. The variation of ‘ 1C ’ with the aspect ratio for certain Poisson’s 

ratio is shown in the following figure 

 

 

 

 

 

 

 

 

 

 

 

Fig. (25) Variation of ‘ 1C ’ with the aspect ratio (Approximate) [11] 

 

The exact derivation of the equation of the critical compressive stress is based on 

the solution of the plate differential equation of motion in buckling, which can be 

represented by the following equation 
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And the solution of this equation will lead to the formula of the critical buckling 

stress in rectangular plates 

2

2

2

)1(12
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⎠
⎞

⎜
⎝
⎛

−
=

b
tECcr

ν
πσ                        (40) 

Where ‘C’ is a constant depends on the boundary conditions, Poisson’s ratio and 

the aspect ratio of the rectangular plate, as shown in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (26) Coefficient ‘C’ versus the aspect ratio for several boundary conditions 

(Based on Exact Formulation Exact) [11] 

 

So it is important to note that once the value of the compressive principle stress 

in the shear panel reaches the value of ‘ crσ ’ the panel will buckle. Accordingly, 

there is also a critical value for the shear stress, at which the panel will buckle 

2

2

2

)1(12
⎟
⎠
⎞

⎜
⎝
⎛

−
=

b
tECscr

ν
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b
a  
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s

‘ sC ’ is a shear constant that depends on the aspect ratio of the plate, Poisson’s 

ratio and the boundary conditions. If the buckling occurs at stress values higher 

than the proportional limit of the stress-strain relation, the previous equation 

should be modified to 

2

2

2

)1(12
⎟
⎠
⎞

⎜
⎝
⎛

−
=

b
tECsscr

ν
πητ             (42) 

Where ‘ sη ’ is called the plasticity correction factor, where 

G
Gs

s =η               (43) 

Where ‘G’ is the shear modulus and ‘Gs’ is the shear secant modulus of elasticity 

which can be obtained from shear stress-strain diagram for the material. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (27) Theoretical buckling curves for rectangular flat panel in pure shear [11] 

 

Figure (27) shows the variation of shear buckling coefficient with the aspect ratio 

of a rectangular plate for different boundary conditions. 

It is important to mention that the value of ‘ sC ’ shown in the previous curve is for 

flat panels.  

b
a  
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bZ  

s

For curved panels, the value of ‘ sC ’ changes dramatically with the value of the 

radius of curvature of the panel, as shown in the next figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(28-a) Theoretical shear buckling coefficient for long, simply supported 

curved panels [11] 

 

 

 

 

 

 

 

 

 

 

 

Fig. (28-b) Theoretical shear buckling coefficient for short simply supported 

curved panels [11] 

Where bZ  in the abscissa is represented by the equation 

s
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2
2

1 ν−=
rt
bZb                          (44) 

This variable indicates the curvature of the panel. 

Curved shells are sensitive to initial imperfections. Tests show that buckling may 

occur at stresses below those predicted by theory. Thus, the theoretical buckling 

curves are not strictly conservative, but they are useful in the conceptual design 

stage, where they can provide round figure for different dimensions. But, 

additional empirical information may be required to accurately predict the 

buckling strength. 

 

II-4-2 Diagonal Tension Field Beam: 

Once the value of this compressive stress reaches its critical value, the web 

buckles forming what is called diagonal tension field state. Post buckling analysis 

must be conducted to analyze the panel under diagonal tension. Different 

theories are placed for this purpose [7], which can be summarized as follows 

 

II-4-2-a Theory of the Shear Buckling Resistant 

Panels: 

 

 

 

 

 

 

Fig. (29) Cross-sections of built up beams [7] 

Figure (29) shows typical cross-sections of built-up beams of sufficiently thick 

webs to resist buckling up to the failing load (yielding). The beam is called in this 

case ‘buckling resistant beam’. If the web to flange connection is adequately stiff, 

the stresses in the built up beams follow fairly well the formulae of engineering 

theory of bending, where 
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I
VQq

I
Mz

=

=σ
                                                 (45) 

Where, ‘M’ and ‘V’ are the bending moment and the shear force respectively, ‘Q’ 

is the first moment of area of the area enclosed above the point of interest along 

the cross-section, ‘I’ is the second moment of inertia of the cross-section and ‘z’ is 

the distance from the point of interest to the neutral axis of the cross-section. 

It is well known that the distribution of the shear flow along the depth of the web 

follows a parabolic distribution where the maximum value is located at the shear 

center, or at the neutral axis for symmetric webs.  

 

   

 

 

 

Fig. (30) Cross-section of the shear resistant ‘Plate Girder’ beam [7] 

 

If the depth of the flange is small compared to the depth of the beam as shown in 

figure (30) the formulae for the design of the shear resistant panel beam can be 

simplified to what is called ‘Plate Girder’ equations,  

e

Fe
f

h
Vq

Ah
M

=

=σ
                                                (46) 

Where ‘ fA ’ is the cross-section area of the flange. 

Designing a heavily loaded rib to have a shear resistant panel will generate a 

massive structure. Accordingly, optimizing the wing box structure for a minimum 

mass objective function requires the design for a diagonal tension field state. 
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II-4-2-b Theory of Pure Diagonal Tension: 

The theory of pure diagonal tension was developed by Wagner [8]. 

 

Basic Concepts 

The diagonal tension beam is defined as a built-up beam similar in 

construction to the plate girder but with a web so thin that buckles into diagonal 

fields at a load well below the design load.  

 

Fig. (31) Principle of diagonal tension [7] 

 

Figure (31) shows a simple example to explain the full diagonal tension web. 

Figure (31-a) consists of a parallelogram frame of stiffness bars, hinged at the 

corners and braced internally by two slender diagonals of equal size. As long as 

the load ‘P’ is very small the two diagonals will carry equal and opposite stresses. 

at certain critical value of ‘P’ the compression diagonal will buckle as shown in 

figure (31-b) and thus loose its ability to take additional increments of stress. 

Consequently, if ‘P’ is increased further by large amount, the additional diagonal 

bracing force must be furnished mostly by the tension diagonal. At very high 

applied loads the stress in the tension diagonal will be so large that the stress in 

the compression diagonal is negligible by comparison. 

As analogous, change in the state of stress will occur in a similar frame in which 

the internal bracing consists of a thin sheet, as shown in figure (31-c) at low 

values of the applied load, the sheet is in the state of pure shear, which is 

statically equivalent to equal tensile and compressive stresses at 45o to the frame 

axes. At certain critical value of the load ‘P’ the sheet buckles as the load ‘P’ is 
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increased beyond the critical value, the tensile stresses become rapidly 

predominant over the compressive stress, as shown in figure (31-d). The buckles 

develop a regular pattern of diagonal folds, at an angle ‘α ’ and following the lines 

of diagonal tensile stress. When the tensile stress is so large that the compressive 

stress can be neglected entirely by comparison the sheet is said in the state of 

‘fully developed’ or ‘pure diagonal tension’. 

 

Primary Stresses: 

To analyze the stresses in a web in pure diagonal tension, the web is 

assumed to be cut into a series of ribbons or strips of unity width, measured 

horizontally. Each strip is inclined at an angle ‘α ’ to the horizontal axis and is 

under a uniform tensile stress. As shown in figure (32-a) 

 

Fig. (32) Forces in Diagonal Tension Field Beam [7] 

 

The free body diagram of Figure (32-b) shows the internal forces in the strips as 

the web is cut through section A-A, these internal forces are combined to their 

resultant ‘D’. Since all strips have the same stress, the resultant is located at the 

mid-height. The horizontal component of this resultant force ‘D’ is 
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)cot(αVH D =                                     (47) 

This horizontal force is balanced by a two equal compressive force ‘H’ in the 

flanges, since the force ‘D’ is acting at the mid height 

)cot(
2

αVH −=              (48) 

According to the idealized beam theory combined with the pure diagonal tension 

field theory, the total load in the flange will be 

)cot(
2

αV
h
MH

h
MF −±=+±=            (49) 

From figure (32-d) it is clear that the diagonal tension strips are intending to pull 

the two flanges together. Accordingly, the existence of an upright is a must for the 

stability of the web; this upright will be under compression. The compressive 

force in the upright is equal to the vertical forces acting in the strips  

)tan(α
h
dVPU −=              (50) 

Where ‘ UP ’ is the compressive force in the upright and ‘d’ is the distance between 

two adjacent uprights. In case of using only one upright, then ‘d’ can be expressed 

as one half of the distance between the front and the rear spar. 

All primary stresses calculated are function in the diagonal tension stress 

inclination angle ‘α’, where an expression is adopted for this angle as 
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For practical use, the angle ‘α ’ is assigned an average value of 44o. 

The stresses in the flange and the upright can then be calculated, where 
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Where UA  is the cross-section area of the upright. 
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It should be noted that the flange stress calculated in equation (52) is the stress 

generated due to the diagonal tension stresses. The effect of the bending stress in 

the plane of the web is not included in this form. 

 

Secondary Stresses: 

Due to the tension forces in the web strips, the upper and the lower flange 

will be subjected to bending stress, as a secondary stress, as well as the 

compressive primary stresses. In this case the flange can be considered as a 

continuous beam supported by the upright. The total bending load is equal to UP , 

which is the total compressive force in the upright, but is distributed along the 

flange. 

 

Fig. (33) Secondary bending stresses acting on the upper and the lower flange [7] 

 

Figure (33) shows the strips tension forces which generate the secondary bending 

stress in the flange. Considering that this load is uniformly distributed, the 

maximum bending moment will be at the upright,  

h
VdM

12
)tan(2

max
α

=                         (53) 

It is important to indicate that the previous calculations are based on the 

assumption that the flange is stiff enough, that it will not bend excessively to 

release the tension field stresses in some strips, else a further analysis should be 

considered to the redistribution of stresses due to the excessive bending 

deformation of the flanges. 
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Behavior of the Upright: 

The upright is a stiffener that is introduced to the web to oppose the 

tendency of the diagonal tension strips to pull the upper and the lower flanges 

together. It may be in the form of a stiffener member, double on both faces of the 

web or single on one side of the web both should be fastened to the web; or it may 

be a vertical bead in the web surface. In both cases and since it is subjected to 

compressive stress, a buckling analysis should be conducted to insure that it will 

be stable under the compressive load. 

The traditional buckling analysis of columns can not be applied directly to the 

upright, since the upright is fastened into the web or a built-in part of the web as 

in the case of the vertical beads. But the analysis should be modified because once 

the upright starts buckling; it will be subjected to a distributed transversal load 

acted upon from the diagonal tension field strips, trying to turn it back into the 

plane of the web. The magnitude of this restoring load is proportional to the 

deflection of the upright. Wagner [9] introduced the curve shown in Figure (35) 

for the ratio of ‘
EU

U
P
P

’ as a function in the ratio of ‘
h
d

’ where 
EU

U
P
P

 is the ratio of 

the buckling load of a double upright to Euler’s buckling load (the buckling load 

in case the stiffeners are not fastened to the web) while the ratio 
h
d

 is the ratio 

between the distance between two adjacent uprights to the height of the web.  
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Fig. (35) Buckling loads of a double upright fastened into a flat web [7] 

 

In the calculation of these curves Wagner made an assumption that the upright 

was clamped to the flange, which can not be obtained unless the flange would had 

an infinite torsional stiffness which is not the case in actual structures. Most 

designs are characterized by low torsional stiffness flanges. Accordingly the line 

denoted by experimental in figure (35) is slightly conservative and may be used to 

obtain results for the buckling analysis of the uprights. 

Single uprights will be subjected to eccentric effect, because the centroid of the 

upright cross-section will be shifted from the plane of the web by a distance of 

eccentricity ‘e’ then the bending moment in the upright will be  

UU ePM
e
=               (54) 

And the stress in the upright superficial fibers will be 
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Where 
eUA is the effective area of the upright that can be expressed as 
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And ‘ ρ ’ is the upright cross-section radius of gyration of the area moment of 

inertia with respect to an axis parallel to the web surface. 

It should be noted that in case of the double upright, the last two formulae can be 

used with ‘e=0’. 

 

Stability of the Upright: 

(i) Failure by buckling instability 

As mentioned before, the upright is subjected to compressive stress. It is 

considered as a column in compression. Accordingly, it is subjected to column 

buckling instability, as previously discussed.  

Recalling equation (36), the Euler’s buckling load for an elastic column in 

compression can be expressed as   2
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=  , where ‘n=1’ presents the 1st 

mode of buckling. Accordingly, the term ‘
EUP ’ in figure (35), can be expressed as 
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Where ‘ eL ’ is the effective length of the upright. The effective length of the 

upright is presented by an empirical formula in the form 
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Where ‘K’ is called diagonal tension factor (K=1 in the case of pure diagonal 

tension, further details for the diagonal tension factor will be presented in later 

sections) and ‘ Uh ’ is the height of the upright. ‘ I ’ in equation (57) is the second 
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][ksiallUσ  
 

moment of area of the upright cross-section with respect to an axis parallel to the 

web surface. 

‘I’ can be expressed in the form UAI 2ρ= , where ‘ ρ ’ is the upright cross-section 

radius of gyration. Accordingly, equation (57) can be rewritten as 
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The actual compressive load acting on the upright can be calculated using 

equation (52). Using equation (59) the Euler’s buckling load can be calculated. 

With the help of figure (36), the critical buckling load for a double upright 

fastened to a plane web can be calculated. With comparison with the load applied 

on the upright, the stability of the upright can be checked. 

For a conservative design, the standard Euler buckling curves can be used to 

obtain the allowable value of the stress in the upright ‘ allUσ ’ with slenderness 

ratio ‘ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
eL

’. Then the stability can be checked by checking that allUU σσ ≤ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (35-a) Allowable compressive load in the upright [7] 
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(ii)  forced crippling: 

 

 

 

 

 

 

 

 

 

 

 

Fig. (36) Failure of the upright by forced crippling [7] 

 

Figure (36) shows a section in a web under diagonal tension and reinforced by an 

upright. The shear buckles that take place in the web forces the upright to buckle 

along the edge A-A of the attachment leg. The amplitude of this wave is 

maximum along the free edge at A-A and zero along the corner B-B. If the 

deformations are large then some small waves would appear along the edge C-C. 

This leads us to the conclusion that not all the cross-section of the upright is 

sharing in the bending stiffness of the upright. To enable that the, the upright 

should be welded to the web along the line B-B but this is not the case in practice. 

The governing equations for this type of failure will be shown in the section of the 

allowable stresses.   
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II-4-2-c Engineering Theory of Incomplete 

Diagonal Tension: 

When a gradually increasing load is applied to a beam with a plane shear 

web, at low loads the beam behaves in accordance to the shear resistant beam 

theory. At certain critical load value, the web buckles and an upright should be 

introduced to the web. As the load increases more and more, the buckles become 

deeper and the buckle pattern changes slowly to approach the well developed 

diagonal tension case.   

It is very rare that the beam will remain in a shear resistant until failure, but the 

common is that it will buckle moving to the diagonal tension. On the other hand 

it is also very rare that the beam reaches the case of the complete diagonal 

tension without encountering any failure. Accordingly, it is clear that the two 

cases of the shear resistant and the complete diagonal tension are a limiting cases 

and the real practical case is the incomplete diagonal tension case.  

Referring to figure (31), the Incomplete Diagonal Tension Theory can be stated 

as: As the load ‘P’ increases from zero, both diagonals work initially. At certain 

load value ‘ crP ’, the compression diagonal will buckle, the load in the diagonal 

being ‘ crD ’. For any further increase in the load ‘P’ beyond its critical value, the 

load in the compression diagonal is assumed to be constant ‘ crD ’. In other words 

if the applied shear stress in the web ‘τ ’ is larger than the its critical value ‘ crτ ’, 

only the excess shear stress ( crττ − ) will produce the diagonal tension effects. 

⎟
⎠

⎞
⎜
⎝

⎛ −=−=
τ
τ

ττττ cr
crDT 1             (60) 

Where ‘ DTτ ’ is the excess portion of the shear stress that generate the diagonal 

tension case. It is important to note that the applied shear stress ‘τ ’ is a nominal 

stress, i.e. it does not exist, but it is split into two parts 

1) ‘ DTτ ’ which is carried by diagonal tension action. 

ττ KDT =                                      (61) 

‘K’ is called the ‘Diagonal Tension Factor’ where 
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τ
τ crK −= 1                                      (62) 

2) ‘ Sτ ’ which is carried by the true shear action of the web. 

And ττ KS =              (63) 

An empirical formula for the value of ‘K’ may be used to replace the previously 

calculated theoretical formulae, where the experiments showed that for 

‘ 21 <<
crτ
τ

’ the diagonal tension factor can be approximated by the formula 

⎟
⎠
⎞

⎜
⎝
⎛ += 3

3
1434.0 ρρK             (64) 

Where 
cr

cr
ττ
ττ

ρ
+
−

=  

For crττ <  the factor ‘K’ is considered zero, and the web is loaded in the shear 

resistant case. As the ratio 
crτ

τ  approaches infinity the diagonal tension factor 

approaches unity, and the web is said to be in the complete diagonal tension 

case. 

 

 

 

 

Fig. (37) Stress systems in diagonal tension webs [7] 

Figure (37) shows the different stress cases for the shear webs. The intermediate 

case is showing the general case of the incomplete diagonal tension case, 

superimposing the stresses in this case, gives the stresses in the direction of ‘α’ 

denoted by ‘ 1σ ’ and the stress in the perpendicular direction denoted by ‘ 2σ ’ 

)2sin()1(),2sin()1(
)2sin(

2
21 ατσατ

α
τσ KKK

−−=−+=        (65) 

And since it is assumed that the web is carrying a part of the load as compressive 

load, so it is convenient to consider it supporting a part of the compressive load 

applied formerly to the upright. Accordingly, equation (52) can be modified to 
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            (66) 

 

II-4-2-d Failure of the web under the effect of the 

incomplete diagonal tension: 

The stress in the web can be expressed as a nominal shear stress.  An 

empirical formula for the peak nominal stress in a flat panel is presented as 

( )( )21
2'

max 11 KCCK ++= ττ             (67) 

Where 1C  is a correction factor for the tolerance of the angle ‘α ’ if it is slightly 

changed than its average value of ‘45o’ and ‘K’ is the ‘diagonal tension factor’ 

For ‘K=1’ (i.e. the complete diagonal tension case) the angle correction factor is 

calculated using the formula 

1
)2sin(

1
1 −=

α
C                                     (68) 

For other values of ‘K’ the value of 1C  can be obtained from figure (38) based on 

the calculated value of the angle ‘α ’ 

 

 

 

 

 

 

 

 

 

 

Fig. (38) Angle Factor 1C  [7] 
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‘ 2C ’ is the stress concentration factor arising from flexibility of the flanges. 

Which can be obtained from Figure (39) 

 

Fig. (39) Stress concentration factors 2C  and 3C  [7] 

 

The horizontal axis in figure (39) represents the flange-flexibility parameter dω  

which can be expressed as 

4
4

11)sin(
h
t

II
dd

CT
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= αω            (69) 

Where TI  and CI  represent the second moment of area of the tension and the 

compression flanges respectively (with respect to their centroidal axis).  
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Fig. (41) Ratio of the effective to the actual area of the upright 
[7] 

II-4-2-e Summary for the Stress Analysis of Flat 

Webs Under Diagonal Tension Filed: 

Based on what is mentioned in the previous sub-sections, the terms used 

in stress analyzing a flat web stressed in an incomplete diagonal tension can be 

summarized as 

(i) Effective area of the Upright: 

(1) For single Upright 

        2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ρ
e

A
A U

Ue
              (a) 

(2) For Double Symmetrical Upright 

Put ‘e=0’ then 

UU AA
e
=                (b) 

      An estimate for the value of 
U

U

A
A

e  can be made using the following figure 

 

 

 

 

 

 

 

 

(ii) Effective column length  of the Upright: 

The effective column length ‘ eL ’ of an upright is given by the empirical 

formula 
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Where ‘ Uh ’ is the length of the upright. 

 

(iii) Critical shear Stress: 

The critical shear stress in the web can be calculated using equation  

2

2

2

)1(12
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=

b
tECsscr
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πητ               (d) 

Where ‘b’ in this equation represents the smaller dimension in the web, which 

will be its height in the case of the rib, then this equation, can be reformulated as 
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Where the shear constant sC  can be obtained from figure (27). 

 

(iv) Nominal Web Shear Stress: 

The nominal web shear stress can be calculated using the formula 

t
qmax=τ                              (f) 

Where ‘ maxq ’ is the maximum shear flow in the web. 

 

(v) Diagonal Tension Factor: 

The diagonal tension factor can be calculated based on the stress ratio 

‘
crτ
τ

’  

for ‘ 21 <<
crτ
τ

’                 ⎟
⎠
⎞

⎜
⎝
⎛ += 3

3
1434.0 ρρK             (g) 

Where 
cr

cr
ττ
ττ

ρ
+
−

=                         For crττ <  the factor ‘K’ is considered zero 
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τσU  

(vi) Angle of Incomplete Diagonal Tension: 

For practical use, the angle ‘α ’ is approximated by ‘44o’. Also, an empirical 

figure based on experimental results is introduced for the calculation of this angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (42) Angle of the incomplete diagonal tension [7] 

 

(vii) Stresses in the Upright: 

The stress in the upright can be calculated using the formula 

)1(5.0

)tan(

K
dt

A
K

eU
U

−+
−=

ατσ                           (h) 

It is important to note that the value of Uσ  calculated here is the average 

compressive stress along the upright, but the maximum value always takes place 

at the mid-height of the upright. 

The ratio 
U

U

σ

σ
max  can be obtained empirically, using the following curve 
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Fig. (43) Ratio of the maximum stress to the average stress in the upright [7] 

 

It is important to note that the calculation of the upright stress is dependent on 

the incomplete diagonal tension angle, while to obtain the angle using the curve 

presented in figure (42), the stress in the upright is required. Accordingly, the 

angle is given an initial value of ‘44o’ which is used for the calculation for the 

stress in the upright, then an iteration process is conducted to estimate the 

approximate value of the angle with sufficient convergence (normally, three 

iterations are enough to obtain the approximate value). 

 

(viii)  Maximum web stress: 

The maximum stress in the web can be calculated as 

( )( )21
2'

max 11 KCCK ++= ττ                 (i)   

Where 1C  can be obtained from figure (38). While the value of 2C  can be 

obtained from figure (39). 
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II-4-2-f Allowable Stresses: 

(i) Allowable web stress: 

An empirical curves based on experimental results are designed for the 

calculation of the allowable stresses in plane shear webs. The experiments 

showed that failure in webs always starts at the web-to-flange attachment 

line. Although the shear stress through out the whole web should be 

investigated, but in most cases the web-to-flange attachment line would be 

the line of maximum stress. The experiments were done for samples made of 

24S-T3 Aluminum alloy with ultimate strength of ’62 ksi’ and 75S-T6 

Aluminum alloy with ultimate strength of ’72 ksi’. Figures (44) and (45) show 

the results. 

 

Fig. (44) Allowable value of maximum shear stress in the web [7] 
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Fig. (45) Allowable value of maximum shear stress in the web [7] 

 

In Figures (44) and (45) the allowable value of the shear stress can be determined 

based on the ‘K’, the diagonal tension factor, and ‘ PDTα ’, angle of Pure Diagonal 

Tensions. As mentioned before, this angle can be computed using equation (51) 

or for practical use, the line in the figure (44) and (45) corresponding to angle 45o 

can be used. 

 

(ii) Allowable stress in the uprights: 

Uprights are subjected to two types of failure namely the ‘forced crippling 

failure’ and the “column action failure” or buckling instability. To avoid upright 

failure, the limiting values of the stresses must be considered.  

(a) allowable stresses for double (symmetrical) uprights 

• to avoid forced crippling failure: 

The maximum upright stress ‘
maxUσ ’ should not exceed the 

allowable value ‘ 0σ ’ defined by the following formula 
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• To avoid column failure or buckling instability: 

The allowable or the critical buckling stress in the upright can 

be obtained using figure (35-a) with slenderness ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
eL

 

while the actual load in the upright can be obtained using 

equation (h). To avoid buckling, the actual load value must not 

exceed the critical buckling load. 

 

(b) allowable stresses for single uprights 

• to avoid forced crippling failure: 

The maximum upright stress ‘
maxUσ ’ should not exceed the 

allowable value ‘ 0σ ’ defined the following empirical formula 
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• to avoid column failure or buckling instability: 

The average stress in the upright should not exceed its 

allowable value obtained from figure (35-a). The average 

stress can be calculated using equation (h) with 

consideration to the effective area of the single upright. 
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Section III    
Ribs can be classified according to its type of loading. For example, a Rib 

subjected only to aerodynamic loads is always considered as a lightly loaded rib 

while a rib subjected to concentrated forces transferred to its structural from fuel 

tanks supporting points, control surfaces supporting points (flaps, ailerons…etc), 

armament supporting points…etc is considered a moderately loaded rib. A 

heavily loaded rib which is always referred to a bulkhead is a one subjected to 

concentrated forces transferred to its structure from landing gears and power 

plant nacelles supporting points.   

The design procedure of the wing rib depends mainly on its type of loading as 

well as some constraints that should be satisfied in the design process like the 

requirements of cut outs for the inspection holes and wiring and piping passages 

though the wing…etc.  

Although the ideal design for the wing rib is designing for incomplete diagonal 

tension state which is efficient from the point of view of weight saving but 

sometimes the existence of cut outs prevent the design for the diagonal tension 

case.  

In this section, two design methodologies for the wing rib will be discussed. 

 

III-1 The 1st Method: Shear Resistant Plate Girder:  

This design method is suitable for lightly loaded ribs and sometimes for 

moderately loaded ribs with cut outs.  

In this method the wing rib will be designed as a shear resistant plate girder that 

will not buckle nor yield under the applied loads. It may not be practical to think 

about designing a lightly loaded rib as a diagonal tension beam, although it will 

result in a reduced thickness web that will be advantageous from the point of 

view of weight reduction. But this merit can be restored by omitting web 

stiffeners and, instead, introducing a series of standard flanged lightening holes 

in to the web, as shown in the following figure 

 

 

    Wing Rib Design Procedure 
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Fig. (46) Lightly loaded rib with standard flanged lightening holes [12] 

 

There are two types of standard flanged lightening holes 

 

 

 

 

 

 

 

 

 

Fig. (47) Lightening holes of typical flanged (45o flanged) [12] 
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Fig. (48) Lightening holes with beaded flanged [12] 

The design curves for aluminum alloy webs with flanged holes are shown in the 

next figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (49) Ultimate allowable gross shear stress for aluminum alloy webs with 

flanged holes [12] 
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Where                   D…the inner diameter of the hole 

                               h…the height of the web 

                               t…thickness of the web 

                               b…distance between the center of two adjacent holes 

The limiting conditions that must be satisfied to use the design curves shown in 

figure (49) are 

75.025.0 ≤≤
h
D

                                                                   (1.1) 

125.0016.0 ≤≤ t                                                                    (1.2) 

7.03.0 ≤≤
b
D

                                                                       (1.3) 

25040 ≤≤
t
h

                         (1.4) 

As shown in figure (49), the value of the ultimate allowable gross shear stress is 

os FKF 1=               (1.5) 

Where                   F0…ultimate allowable shear stress for web without holes 

         Fs… ultimate allowable gross shear stress in the web 

                               K1…correlation factor. 

In case of large holes, then the net shear stress in webs between holes and shear 

stress in vertical sections across the holes should be calculated and assured that it 

is less than the gross shear stress. 

The net shear stress in webs between the holes 

⎟
⎠
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h

t
qf s              (1.6) 

While the net shear stress in the vertical section across the hole is 
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t
qf s                         (1.7) 

The value of the stress calculated in equations (1.6) and (1.7) must be less than 

the value of the stress ‘Fs’ obtained from figure (49). 
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The steps of the 1st design method can be summarized as: 

(1) Load Calculation: 

At the wing station where the wing rib is located, the aerodynamic loads will be 

determined in the form of pitching moment, bending moment and shear force. 

These loads will be used to calculate the shear flow around the airfoil cross-

section. This shear flow will be applied directly to the perimeter of the wing rib. 

(2) Maximum shear flow ‘ maxq ’ calculation: 

Based on the shear flow distribution, calculated in the previous step, the Shear 

flow through out the wing rib cross-sections will be calculated to determine the 

value of the maximum shear flow. In case of aerodynamic loads which are 

transferred to the rib from the skin-stringer panels, the maximum shear flow is 

always located at the rib perimeter.  

(3) Determination of the geometrical constraints: 

According to the wing box cross-section dimensions at the specified spanwise 

wing station, the values of the wing maximum section height ‘ H ’ and width rC  

(the distance between the front and the rear spar) will be obtained. From figure 

(46), if the wing rib is of the first type (I) where the web cap is an integral part of 

the web, then the height of the web can be calculated as ‘ Hh
3
2

= ’ where ‘ H
3
1

’ is 

stored for the effective depth of the upper and the lower integrated web cap. The 

trailing and leading edge rib parts will not be considered in the current analysis. 

(4) According to the wing rib material type, the modulus of elasticity, yield 

strength in tension, compression and shear, ultimate strength and Poisson’s ratio 

will be specified. 

(5) Based on the shear flow calculations, the maximum shear stress will be 

calculated in terms of the wing rib thickness ‘t’. 

t
qmax

max =τ               (1.8) 

(6) The value of the critical buckling shear stress will be calculated using the 

formula 



 82

2

2

2

)1(12
⎟
⎠
⎞

⎜
⎝
⎛

−
=

h
tECscr

ν
πητ                        (1.9) 

In this equation, the value of the constant ‘C’ will be obtained from Figure (27) 

based on the following parameters 

(i) Boundary conditions 

The rib is considered as simply supported from all sides.  

(ii) Aspect ration 

The horizontal axis in figure (27) represents the web aspect ratio where 

h
C

b
a r=             (1.10) 

(7) To avoid wing rib web buckling under the current loading, the maximum 

shear stress in the rib must not exceed the value of the critical buckling shear 

stress where  

crττ ≤max             (1.11) 

Based on the previous inequality, the minimum value of the wing rib web 

thickness can be obtained as 
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                     (1.12) 

In equation (1.12) the value of the plasticity coefficient ‘ sη ’ will be considered 

equal to one since the rib is being designed for pure elastic conditions.  

(7) Now, the value of the maximum shear stress maxτ  based on the calculated web 

thickness in the previous step will be calculated and compared with the value of 

the yield shear stress of the wing rib material. If yττ <max  , then the value of the 

web thickness obtained is right. Else, the value of ‘ sη ’ must be calculated and 

entered to equation (1.12) for recalculation of web thickness.  

(8) The weight of the wing rib can be calculated as 

gtAW RrjR ρ=             (1.13) 

where ‘ Rρ ’ is the specific mass of the wing rib material, ‘g’ is the gravity 

acceleration and rjA  is the wing rib area at station ‘j’ along the wing span. The 
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value of the weight will be useful to compare the results of the different design 

methodology.  

(9) Based on the web thickness calculated in the previous step and the web height 

calculated in the 3rd step, equations (1.2) and (1.4) will be used to check the rib 

limiting conditions for the use of the lightening holes design curves. 

(10) Once the dimensions satisfy the limiting conditions, then the maximum net 

shear stress in the web can be calculated as 
t

q
f s

max=  because no lightening 

holes are introduced yet.  

(11) Using the design curves in figure (49) with the value of ‘
t
h

’ then the value of 

the ultimate allowable shear stress for the web without holes ‘ oF ’ can be 

obtained. 

(12) Using equation (1.5) along with the values of ‘ oF ’ and ss fF = , then the value 

of the correlation factor ‘ 1K ’ can be calculated. 

(13) Again using the design curves presented in figure (49) along with the value of 

‘ 1K ’ and using the optimum ‘ 1K ’ curve, then we can get values for the ratios ‘
h
D

’ 

and ‘
b
D

’. Using these two ratios, then the diameter of the lightening holes can be 

calculated. 

(14) Using figures (47) and (48) to select a standard hole’s diameter based on the 

choice between beaded flanged hole or typical flanged hole with 45o flanged. 

(15) Based on the standard diameter for the hole obtained in the previous step, 

the ratio ‘
h
D

’ should be recalculated. Then with the new ratio of ‘
h
D

’ along with 

the value of ‘ 1K ’ calculated in step (12) and using figure (49) a new ratio for ‘
b
D

’ 

can be obtained then the holes spacing ‘b’ can be calculated. 

(15) Now, the value of the allowable shear flow can be calculated as 

tFKq oall 1=             (1.14) 
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(16) Margin of safety check:  

Using equation (1.6) and (1.7) the net shear stress in the web between the holes 

and in the vertical section passing through the hole must be calculated. Check 

that  

( )
01

max
.. ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

all

s
q

f
SM                      (1.15) 

If this inequality is satisfied then the design is safe. 

(17) Based on the width of the rib ‘ rC ’, the diameter of the lightening holes ‘D’ 

and the holes spacing ‘b’ the number of lightening holes in the rib can be 

calculated as 

1−=
b

Cn r
h                        (1.16) 

The value obtained from equation (1.16) should be rounded to the smaller 

integer hrn . 

(18) Then based on the rounded number of holes the actual hole spacing can be 

computed as  

1+
=

hr

r
r n

Cb             (1.17) 

 

III-2 The 2nd Method: Incomplete Diagonal Tension 

Shear web:  

(1) Assume the value of the web thickness obtained in the previous method is ‘ 1t ’ 

(2) At web thickness ‘ 1t ’, the web is acting as a ‘plate girder’ that will not buckle 

nor yield under the current loading. 

(3) Assume ‘ 2t ’ to be the thickness of the web at which the material starts yielding 

which can be calculated as 

y

q
t

τ
max

2 =               (2.1) 

(4) based on the values of ‘ 1t ’ and ‘ 2t ’ a new web thickness value ‘t’ will be 

suggested as an input value for the design process of the wing rib, where 
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(5) For sure at this web thickness the web will buckle, and it will be considered in 

the case of incomplete diagonal tension state of stress.  

(6) Based on the input value of ‘t’, the nominal shear stress in the web can be 

calculated as 

t
qmax=τ              (2.3)  

(7) Based on the value of ‘t’, calculate the value of the critical buckling stress 
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Note that 1=sη  because the whole design process is considered to be taking 

place in the elastic zone of stress and the value of ‘C’ can be obtained from figure 

(27). 

(8) Since the web is in the incomplete diagonal tension state of stress, uprights 

must be introduced into the web. It is always advisable to reduce the distance 

between the adjacent uprights in order to reduce the flexibility of the flanges 

which is necessary to eliminate the secondary stresses arising from the non-

uniform distribution of the diagonal tension stress along the web due to excessive 

deformation of the flange. It is recommended to consider ‘ hd ≈ ’ where ‘d’ is the 

distance between adjacent uprights while ‘h’ is considered as two third the of the 

airfoil thickness because one third of the airfoil thickness is always assumed for 

the upper and lower rib cabs.  

 Based on that the number of uprights that should be included in the design can 

be calculated as 

h
Cn r

U =               (2.5) 

Where the value of ‘ Un ’ will be rounded to the nearest integer.  

(9) the distance between the adjacent uprights can be calculated using the 

rounded value of ‘ Un ’ as 
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U

r
n
Cd =              (2.6) 

Where ‘ rC ’ is the distance between the front and the rear spars. 

(10) Based on the value of nominal shear stress ‘τ ’ and the critical buckling stress 

‘ crτ ’ that are calculated in steps (6) and (7) respectively, the diagonal tension 

factor ‘K’ can be calculated using the empirical formula 

For ‘ 21 <<
crτ
τ

’ 

⎟
⎠
⎞

⎜
⎝
⎛ += 3

3
1434.0 ρρK  Where                       

cr

cr
ττ
ττ

ρ
+
−

=       (2.7) 

For crττ <  the factor ‘K’ is considered zero 

(11) Designing the uprights: 

Assume that the single upright construction will be selected for the design 

process where one stiffener will be fastened to the web.  

The upright is subjected to two types of failure 

a) Column Failure or buckling instability: 

To avoid column failure the average value of the stress in the upright should not 

exceed its allowable or its critical buckling stress which can be obtained using 

figure (35-a) with slenderness ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
eL

 where ‘ eL ’ is the effective length of the 

upright, which can be calculated as 
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To compute the radius of gyration, the geometry of the upright cross-section 

should be defined first.  

To find the shape of the upright cross-section, figure (41) is showing different 

types of upright cross-sections, selecting the angle type with equal legs length, 

and selecting the ratio of 8=
Ut
b

, the ratio of 51.0=
U

U

A
A

E  
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⎠

⎞
⎜⎜
⎝

⎛
+

=

ρ
eA

A

U

EU
           (2.9) 

Assuming that the upright leg normal to the plane of the web is the effective part 

in resisting the buckling failure then 

⎟
⎠
⎞

⎜
⎝
⎛ +

=
2

tbe            (2.10) 

Substituting equation (2.10) into equation (2.9) the value of ‘b’ can be computed. 

Refer to figure (41) for specifying the dimension ‘b’. 

Since 8=
Ut
b

, then the thickness of the upright can be computed, then the cross-

section area of the upright can be computed as 

22 UUU tbtA −=                       (2.11) 

Then the second moment of area with respect to an axis passing through the 

centroid of the web cross-section and parallel to the plane of the web can be 

calculated as 

( ) 222
2

3 2
212

1 ρρ UUU
U

UU tbtA
tb

btbtI −==⎟
⎠

⎞
⎜
⎝

⎛ +
+=      (2.12) 

Using equation (2.12) the radius of gyration of the upright cross-section can be 

computed. 

Then the ratio of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
eL

 can be calculated, then figure (35-a) can be used to find 

the allowable value for the buckling load in the upright.  

 

a) Forced crippling failure (local buckling): 

To avoid the forced crippling, the maximum stress in the upright should not 

exceed its allowable value,  
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)min675(][5.32

)min324(][26

3
1

3
2

0max

3
1

3
2

0max

alloyumAlluTSforksi
t

t
K

alloyumAlluTSforksi
t

t
K

U

U

−⎟
⎠
⎞

⎜
⎝
⎛=≤

−⎟
⎠
⎞

⎜
⎝
⎛=≤

σσ

σσ
   (2.13) 

The maximum stress in the upright can be calculated using the figure (43) while 

the average stress in the upright can be calculated using the equation 

)1(5.0

)tan(

K
dt

A
K

eU
U

−+
−=

ατσ          (2.14) 

 Based on the calculated dimensions for the upright, its effective area can be 

calculated. Then the average stress in the upright can be calculated 

Then the ratio τσ /U  can be calculated, using this ratio with figure (41) a new 

value for the diagonal tension angle can be obtained. 

Based on the new value of the diagonal tension angle, the average stress in the 

upright can be recalculated.  

Repeat the previous two steps in an iteration process until we reach an acceptable 

convergence for the value of the angleα . 

With the value of 
Uh
d

h
d
=  and the diagonal tension factor ‘K’, use figure (42) to 

obtain the ratio of 
U

U

σ

σ
max , then the maximum stress in the upright can be 

calculated. 

Check for oU σσ <max  

(12) Checking for web failure: 

The maximum shear stress in the web can be calculated using the equation 

( )( )21
2'

max 11 KCCK ++= ττ                      (2.15) 

Where                                                1
)2sin(

1
1 −=

α
C       

While the value of 2C  can be obtained from figure (39). 
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From figure (42) the value of the allowable shear stress in the web can be 

obtained *
allτ . 

Check for *'
max allττ <          (2.16) 
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